
257
 October 2006

Volume 6, Issue 5

Timothy A. Vortherms1 and Bryan L. Roth1,2

1Department of Pharmacology, School of Medicine and 2Division of Medicinal Chemistry and 

Natural Products, School of Pharmacy, University of North Carolina, and National Institute of 

Mental Health Psychoactive Drug Screening Program, Chapel Hill, NC 27599

The hallucinogenic plant Salvia divinorum (i.e., “magic mint”) is a member of the 
Sage family that has been used for divination and shamanism by the Mazatecs. 
Over the past decade or so, S. divinorum has been increasingly used recreationally. 

The neoclerodane diterpene salvinorin A is the active component of S. divinorum, 
and recently, the κ opioid receptor (KOR) has been identified, in vitro and in vivo, as 
its molecular target. The discovery of KOR as the molecular target of salvinorin A 
has opened up many opportunities for drug discovery and drug development for a 
number of psychiatric and non-psychiatric disorders. 
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Introduction

Salvia divinorum is a perennial herb of the Lamiaceae (mint) family 
that is indigenous to the Sierra Mazateca of Oaxaca, Mexico (1, 2) 
(Figure 1). Common names for the herb include ska Maria Pastora 
and la Maria, reflecting the Mazatec belief that Salvia is the incar-
nation of the Virgin Mary(1). S. divinorum has been traditionally 
used by Mazatec curanderos (i.e., folk healers) to produce halluci-
nogenic experiences essential for spiritual divination. S. divinorum 
has also been used in traditional healing practices for ailments as 
diverse as diarrhea, headache, and rheumatism, as well as the mag-
ical disease known as panzón de barrego (i.e., swollen belly), which 
is said to be caused by a curse from an evil sorcerer (1). S. divino-
rum was discovered by Wasson and Hofmann in 1962 and was 
subsequently described by Epling as a new species of Salvia (2).

Traditionally, S. divinorum has been ingested by chewing 
fresh leaves as a quid or by drinking an extract made from freshly 
crushed leaves. Alternatively, S. divinorum can be taken by pyroliz-
ing dried leaves and rapidly inhaling the resulting smoke (3). The 
hallucinatory effects are potent and intense, with extraordinarily 
rapid onset, and can last up to an hour (3, 4). Interestingly, the 
hallucinations produced by S. divinorum appear to be qualitatively 
different from other hallucinogens; users typically describe their 
experience of “entering another reality” and having a “separation 
from body,” subjective descriptions that are consistent with a “spa-
tiotemporal dislocation” (5–7). 

Over the past decade, S. divinorum has become used for rec-
reational purposes, particularly in the US and Europe. The use 
of S. divinorum as a legal hallucinogen has been facilitated by the 
availability of S. divinorum leaves and extracts through Internet 
suppliers. The use of S. divinorum has been unregulated, although 
several countries (e.g., Australia, Denmark, Italy, and Sweden) 
have recently classified S. divinorum as a controlled substance. In 
the US, S. divinorum is not listed under the Controlled Substances 
Act, although several states, including Missouri, Delaware, 
Louisiana, and Tennessee, have passed legislation controlling the 
use S. divinorum (see www.deadiversion.usdoj.gov). 

The active component of S. divinorum is salvinorin A, a 
neoclerodane diterpene (3) (Figure 1). The lipid-like salvinorin 
A molecule is chemically and structurally unique in that it rep-
resents the only known psychoactive diterpene and was the first 
non-nitrogenous hallucinogen to be identified. Smoking 200–500 
µg of purified salvinorin A produces hallucinations that have 
been reported to be identical in nature to those observed follow-
ing ingestion of fresh S. divinorum leaves (3). The effective dose of 
salvinorin A in humans is similar to that of the synthetic halluci-
nogens lysergic acid diethylamide (LSD) and 4-bromo-2,5-dime-
thoxy-phenylisopropylamine (DOB) (8). 

Initial attempts to identify the molecular target of salvinorin 
A were unsuccessful, despite binding probes against a number of 
molecular targets, including various serotonin (5-hydroxytrypta-
mine; 5-HT) receptors (3). Subsequently, salvinorin A was submit-
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Figure 1. The magic mint and its products. A. Salvia divinorum is a 
member of the Lamiaceae (mint) family that has been traditionally used by 
Mazatec shamans for spiritual divination, and more recently S. divinorum has 
become increasingly used as a recreational hallucinogen. B. Salvinorin A is 
the active component of S. divinorum. C. Salvinorin B is a potential salvinorin 
A metabolite resulting from ester hydrolysis and is relatively inactive at KOR. 
Carbon atoms are shown in gray and oxygen atoms are shown in red.



259
 October 2006

Volume 6, Issue 5

Salvinorin A: From Natural Product to Human Therapeutics

ted to the National Institutes of Mental Health Psychoactive Drug 
Screening Program (NIMH-PDSP; see http://pdsp.med.unc.edu) 
and screened against a panel of fifty molecular targets, including 
cloned human G protein–coupled receptors, transporters, and 
ion channels, and for comparison, the prototypical hallucinogen 
LSD was simultaneously screened (9). Surprisingly, salvinorin A 
displayed significant binding at the Gαi-coupled κ opioid receptor 
(KOR), but did not bind to the cloned δ opioid receptor (DOR) or 
µ opioid receptor (MOR) at the concentration tested. Salvinorin 
A also failed to bind to the human 5-HT2A receptor, the principal 
molecular target of classical hallucinogens such as LSD (9, 10). 
Functional studies measuring inhibition of forskolin-stimulated 
cyclic AMP accumulation and [35S]GTPγS binding confirmed 
salvinorin A as a potent agonist at cloned KOR and at the native 
KOR expressed in guinea pig brain (9). Salvinorin A thus became 
the first identified naturally occurring, non-nitrogenous KOR-
selective agonist with psychotomimetic properties (9). This discov-
ery has paved the road for a new avenue of opioid research and 
has fueled the search for other diterpenes with similar pharmaco-
logical properties.

Isolation of Salvinorin A and Related 
Diterpenes from S. Divinorum

Although the psychotropic effects of Salvia divinorum have been 
widely known, the chemical component(s) responsible for these 
properties have not been extensively studied until quite recently. 
The first compounds isolated from S. divinorum leaves (Figure 2) 
were the neoclerodane diterpene salvinorin A and salvinorin B (11) 
[structurally identical to the terpenoids independently isolated 
and designated elsewhere as divinorin A and divinorin B (1, 12)]. 
Salvinorin A in the leaves of S. divinorum ranges in concentration 
from 0.89 to 3.70 mg/g dry weight (13), and salvinorin B, as well as 
other isolated diterpenes, are found at much lower concentrations 
(14–16). 

Salvinorin A was found to be a potent agonist at KOR, 
whereas salvinorin B, a potential metabolite of salvinorin A result-
ing from ester hydrolysis at the 2-acetoxy group, was inactive 
at KOR (9, 17). It has been suggested that rapid hydrolysis of 
salvinorin A resulting in the production of salvinorin B could con-
tribute to the short duration of action in vivo (6). Chemical modi-

fications at the C2 position 
have been implemented as a 
potential means of increas-
ing the metabolic stability 
of salvinorin A (18) (Figure 
3). Intriguingly, salvinorin A 
is slightly more potent than 
other KOR-selective ago-
nists, such as U50488H and 
U69593, in functional assays 
measuring potassium conduc-
tance through G protein–regu-
lated K+ channels (17). 

Following the identifica-
tion of salvinorin A and B, 
several other diterpenes were 
isolated from the leaves of S. 
divinorum (Figure 2): salvino-
rin C, which has weak affinity 
for KOR (19) and reportedly 
lacks psychotropic effects 
in humans (20); salvinorins 
D–G (15, 16, 21); divinatorins 
A–E (14, 21); and salvinicins 
A and B (22) (Figure 2). The 
chemical structures and phar-
macology of these salvinorin 
analogs have recently been 
characterized, and only sal-
vinorin G (Ki = 418 ± 117 
nM) and divinatorin D (Ki = 
230 ± 21 nM) exhibit mea-Figure 2. Structures of salvinorin A and B and related diterpenes isolated from Saliva divinorum. 
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surable affinities for KOR (19, 21, 23). Salvinorin A is the only 
isolated neoclerodane diterpene known to exhibit high affinity 
for KOR. Interestingly, initial studies indicate that salvinicin A is 
a partial agonist at KOR, whereas salvinicin B demonstrates weak 
antagonist activity at MOR (22). These observations suggest that 
modification of the unique scaffold of salvinorin A may lead to the 
discovery of novel selective agonists and antagonists. 

Structure–Activity Relationships of 
Salvinorin A Derivatives

The functional groups of salvinorin A have been extensively 
modified, and subsequent structure activity relationship (SAR) 
studies have begun to clarify the pharmacophore. The rapidly 
expanding library of salvinorin A analogs includes modifications 
and substitutions at the C1 (19), C2 (17, 18, 24–28), C4 (18, 19), 
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Figure 3. Structures of salvinorin A and representative derivatives. Representative modifications to the salvinorin A structure are shown for the indicated 
positions. Structural features of salvinorin A required for acitivty at KOR are shown in red, and elements shown in blue are not required for activity at KOR. 
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C17 (19), and C18 positions (18, 29), as well as the furan ring (19, 
30) (Figure 3). Subsequent SAR studies have been consistent with 
the pharmacophore proposed by Munro and colleagues (19, 23). 

There are several reports exploring the effects of the 2-acetoxy 
group of salvinorin A on affinity and selectivity for KOR. In general, 
modifications in terms of size and electronegativity are not well toler-
ated at the C2 position (27). Interestingly, the propionate derivative 
retains high affinity for KOR (Figure 3, structure 15) but exhibits 
partial agonist activity (17). Further SAR studies at the C2 position 
reveal that the N-methylacetamide and 2-epi-isopropylamine deriva-
tives (Figure 3, structures 16 and 17), which are predicted to have 
increased stability and aqueous solubility, are full agonists at KOR, 
with potencies comparable to salvinorin A (18). Additional work 
shows that substitution of the methoxymethyl group at the C2 posi-
tion of salvinorin A (Figure 3, structure 18) results in a full agonist 
with a sevenfold increase in potency at KOR (27). Derivatization of 
salvinorin A has also identified the C2 position as a critical site for 
receptor subtype selectivity. In fact, the 2-benzoate derivative (struc-
ture 19) was the first neoclerodane diterpene identified with MOR 
agonist activity (26). The 4-bromo benzoyl derivative (structure 20) 
also exhibits high affinity for MOR, whereas the affinity for KOR is 
decreased more than 350-fold, thus significantly increasing the selec-
tivity for MOR over KOR (28). Intriguingly, the C2 epimer of salvino-
rin A (not shown) has decreased activity at KOR, but also exhibits 
weak antagonistic activity at DOR, identifying the first neoclerodane 
diterpene with DOR antagonist activity (29). These observations sug-
gest that further modification of the salvinorin A scaffold may result 
in derivatives with improved receptor affinity and selectivity. 

Modifications of salvinorin A at the C4 position reveal that 
the methyl ester group is required for KOR activity (Figure 3, 

shown in red). The 18-hydroxy derivative (structure 21) fails to 
activate KOR but retains weak binding affinity (Ki = 347 ± 53 
nM), perhaps representing antagonistic activity (19). Substitutions 
at the C18 position such as the dimethylamide derivative (struc-
ture 22), as well as other ester, amine, and ether substitutions, 
markedly decrease affinity for KOR (18, 29), confirming that the 
methyl ester group at the C4 position is a critical component of 
the pharmacophore. Removal of the lactone carbonyl from the C17 
position (structure 24) has a nominal effect on the affinity and 
potency at KOR (19). Reduction of the C1 ketone to a hydroxy 
or acetoxy group significantly decreases binding affinity for KOR; 
however, removal of the ketone group (structure 26) causes only a 
fivefold decrease in binding affinity for KOR (19). The tetrahydro 
derivative (structure 25) displays a dramatic decrease (fortyfold) in 
affinity, but not potency, at KOR, suggesting that the furan ring is 
potentially part of the pharmacophore (19). Additional SAR studies 
reveal that epimerization at the C8 position (structure 23) results 
in a seventyfold decrease in binding affinity for KOR (19, 29). In 
summary, SAR studies suggest that the methyl ester at C4 and the 
furan ring at C12 are required for activity at KOR (Figure 3, shown 
in red), whereas the C17 lactone and C1 ketone are not as strin-
gently required (19) (Figure 3, shown in blue). 

Molecular Modeling and Mutagenesis 
Studies of the Salvinorin A:KOR Binding 
Complex

There have been a limited number of receptor mutagenesis and 
molecular modeling studies probing the salvinorin A binding 
pocket of KOR (9, 31, 32). Site-directed mutagenesis of KOR 

Figure 4. Proposed KOR:salvinorin A binding complex. Views are presented through the helical bundles (A) or from the extracellular side of KOR looking 
into the binding pocket of KOR (B). Salvinorin A is stabilized in the binding pocket through hydrogen bonding and hydrophobic interactions with Y119 (helix 2), 
Y313 and Y320 (helix 7), I294 (helix 6) (shown in green), and the second extracellular loop of KOR (shown in yellow). For clarity, some helical residues are not 
shown; figures were constructed using PyMOL.
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reveals that salvinorin A is 
stabilized in the binding 
pocket by interactions with 
tyrosine residues in helix 2 
(i.e., Y119) and helix 7 (i.e., 
Y313 and Y320) (32). Molecular 
modeling predicts that Y119 in 
helix 2 and Y320 in helix 7 sta-
bilize binding through hydro-
gen bonds with the furan ring 
of salvinorin A, and Y313 in 
helix 7 is predicted to stabi-
lize binding through hydro-
phobic interactions with the 
2-acetoxy group of salvinorin 
A (32) (Figure 4). Mutation 
of Y139 in helix 3 and Y312 in 
helix 7 does not markedly 
alter the affinity of salvino-
rin A, suggesting that these 
residues are not involved in 
salvinorin A:KOR binding 
interactions (9, 32). In an ele-
gant approach, Y119C, Y313C, 
and Y320C KOR mutants 
were exposed to a salvinorin 
A derivative containing a 
free sulfhydryl group (i.e., 
2-thiosalvinorin B) (32). The 
affinity of 2-thiosalvinorin B 
was enhanced relative to sal-
vinorin A at the Y313 mutant, 
suggesting that Y313 in helix 7 
is in close proximity to the C2 
position of salvinorin A (32). 
The key role of the conserved 
Y119, Y313, and Y320 residues in 
binding salvinorin A has been 
confirmed (31). 

In Vivo Pharmacology of Salvinorin: 
Implications for Human Therapeutics

Recently, there have been several reports verifying that salvinorin 
A exerts its effects via KOR activation in vivo. Thus, intraperi-
toneal injections of salvinorin A (1.0 – 4.0 mg/kg) results in a 
dose- and time-dependent increase in tail-flick latencies in mice, 
with the maximal response occurring within ten minutes of 
salvinorin A administration (33, 34). Thereafter, the antinocicep-
tive effects of salvinorin A diminish quite rapidly and return to 
baseline within thirty minutes of drug administration (34), which 
may reflect rapid metabolism of salvinorin A in vivo (6, 48). These 

antinociceptive effects were also observed using the hotplate assay, 
in which increased latencies occur at a salvinorin A dose of 1.0 
mg/kg (34). Salvinorin A effects on tail-flick latencies are abolished 
following pretreatment with the KOR-selective antagonist nor-bin-
altorphimine, demonstrating the selectivity of salvinorin A for the 
KOR in vivo (33, 34). Salvinorin A also exhibits dose- and time-
dependent antinociceptive effects in the chemo-nociceptive acetic 
acid abdominal constriction assay (34). 

The antinociceptive effects of salvinorin A and the 2-propio-
nate derivative (Figure 2, structure 15) have also been examined 
in wild-type and a novel strain of KOR knockout mice (34). In 
these studies, salvinorin A and 2-salvinorinyl propionate produced 
concentration- and time-dependent antinociception in wild-type 
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Figure 5. Potential role of the KOR–dynorphinergic signaling complex in the treatment of mood disorders. This fig-
ure depicts the mesolimbic reward pathway that has been implicated in mood disorders. Dopaminergic neurons project from 
the ventral tegmental area (orange) to GABAergic neurons in the nucleus accumbens (blue). Synaptic dopamine (green 
triangles) release can lead to activation of Gαs-coupled D1 dopamine receptors (green spheres) resulting in accumulation of 
cyclic AMP, and subsequent activation of the cAMP response element binding protein (CREB) that regulates transcription of 
dynorphin (blue rectangles), the endogenous KOR ligand (46). In this model, dynorphin activates the presynaptic KOR that 
modulates dopamine release in the nucleus accumbens. Stress-induced increases in CREB activity have been associated 
with depressive-like behaviors in animal models, similar to the behavioral effects observed with administration of KOR-selec-
tive agonists such as salvinorin A, which decrease extracellular concentrations of dopamine within the nucleus accombens. 
These CREB-induced depressive behaviors can be attenuated with KOR-selective antagonists (47), further implicating a 
role for the KOR-dynorphinergic signaling pathway in the treatment of depressive-like behaviors. 
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mice but not in the KOR knockout mice. Similar to other KOR-
selective agonists (36), salvinorin A and the 2-propionate deriva-
tive reduce rectal body temperature in wild-type mice, but this 
effect is absent in KOR knockout mice (35). Salvinorin B tested 
at the same concentrations failed to produce antinociception or 
hypothermic effects in wild-type mice, which is consistent with 
in vitro observations demonstrating that salvinorin B is inactive at 
KOR (9, 17). 

In addition to the recognized potential for antinociceptive 
therapy, it has recently been suggested that S. divinorum may 
provide a pharmacological basis for the treatment of diarrhea 
(37). Specifically, salvinorin A, as well as extract prepared from 
S. divinorum leaves, can inhibit myenteric cholinergic transmis-
sion in guinea pig ileum. The inhibitory effects of salvinorin A on 
ileum contraction are blocked by the non-selective opioid receptor 
antagonist naloxone and the KOR-selective antagonist nor-BNI. 
Taken together, these behavioral observations suggest that salvino-
rin A exerts its effects via activation of KOR in vivo.

There is considerable evidence supporting a role for the 
KOR:dynorphinergic signaling complex in the regulation of mood 
disorders (9, 38, 39). Indeed, KOR agonists induce depressive-
like behaviors in animal models, whereas KOR antagonists have 
antidepressant-like effects in vivo (40). These observations have 
led, in part, to the hypothesis that modulation of KOR signaling 
pathways will be useful for the treatment of depressive behaviors 
(41) (Figure 5). There is also significant evidence to support the 
involvement of KOR signaling pathways in the dependence of 
cocaine [for review, see (49)].To this end, several studies have 
examined whether salvinorin A can elicit the same behavioral 
responses as other synthetic KOR-selective ligands. 

Intraperitoneal injections of salvinorin A (0.25 – 2.0 mg/kg) 
in rats result in a dose-dependent increase in immobility in the 
forced swim test without altering locomotor activity in an open 
field (41). The same concentration range increases the threshold for 
intracranial self-stimulation and decreases extracellular dopamine 
concentrations in the nucleus accumbens (41). These observations 
are consistent with effects of the KOR-selective agonist U69593 
(40) and support the hypothesis that the KOR system may play a 
critical role in depressive-like behaviors. It is noteworthy, however, 
that there has been at least one report demonstrating the useful-
ness of S. divinorum in the treatment of refractory depression (42). 
Ultimately, clinical trials will be needed to resolve the potential role 
for selective KOR agents in treating mood disorders.

Additional studies in mice reveal that salvinorin A decreases 
extracellular dopamine levels in the caudate putamen, but not 
in the nucleus accumbens (43). The effect can be abolished by 
pretreatment with the KOR-selective antagonist nor-BNI (43). 
Salvinorin A also leads to conditioned place aversion and a 
decrease in locomotor activity (43), which is consistent with the 
observation that salvinorin A disrupts climbing behavior in an 
inverted screen task (44). These studies suggest that salvinorin A 
causes some level of sedation and motor incoordination. 

Butelman et al. also have demonstrated that salvinorin A 
exerts its effects via activation of KOR in vivo. In non-human pri-
mates, salvinorin A produces a discriminative stimulus similar to 
the KOR-selective agonist U69593, whereas the NMDA antagonist 
ketamine is not generalized by U69593-trained subjects; the effect 
of salvinorin A can be blocked by a KOR-selective antagonist (45). 
Taken together, these animal studies are consistent with in vitro 
pharmacology studies demonstrating that salvinorin A is a highly 
potent and selective KOR agonist, which likely accounts for the 
effects of the drug in humans. 

Conclusions

Salvinorin A represents the first known non-nitrogenous KOR 
selective agonist and the first non-alkaloidal hallucinogen. 
Salvinorin A is a potent KOR agonist in vitro and in vivo, sug-
gesting that the hallucinogenic effects produced by salvinorin A 
are mediated by activation of KOR. Modification of the salvinorin 
A scaffold has also led to the development of MOR-selective ago-
nists. Thus, the chemical structure of salvinorin A may be manip-
ulated for the design of novel receptor-specific ligands. Further 
studies with kappa agonists and antagonists will likely provide 
insight into the therapeutic potential of the KOR–dynorphinergic 
system in the treatment of psychiatric disorders associated with 
hallucinations, such as schizophrenia and Alzheimer’s disease, as 
well as various mood disorders.  
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