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Abstract

Recreational use of synthetic cannabinoids (SCB), a class of novel psychoactive sub-
stances is an increasing public health problem specifically in Western societies, with
teenagers, young adults, and the prison population being the most affected. Some
of these SCB are analogs of tetrahydrocannabinol, aminoalkylindoles, and other
phytocannabinoid analogs have been detected in herbal preparations generically called
“Spice.” Spice, “K2” or “fake cannabis” is a general term used for variable herbal mixtures
of unknown ingredients or chemical composition. SCB are highly potent CB1 cannabi-
noid receptor agonists falsely marketed and sold as safe and legal drugs. Here, we pre-
sent an overview of the endocannabinoid system, CB, and SCB chemical structures and
activity at CB receptors. Finally, we highlight the psychological effects of SCB, particularly
on learning and memory, and adverse clinical effects including on the cardiovascular
system, kidneys, and CNS, including psychosis. Taken together, it is clear that many
SCB are extremely dangerous and a major public health problem.

1. THE CANNABINOID SYSTEM, PHYTOCANNABINOIDS,
ENDOCANNABINOIDS, AND SYNTHETIC
CANNABINOIDS

The plantCannabis sativa produces more than 100 chemical compounds

that are named cannabinoids or, more specifically, phytocannabinoids (Andre,

Hausman, & Guerriero, 2016; Ligresti, De Petrocellis, & Di Marzo, 2016;

Verrotti, Castagnino, Maccarrone, & Fezza, 2016). These terpenophenolic

compounds have different relative abundance depending on the cannabis vari-

ety, but among them, Δ9-tetrahydrocannabinolic acid (THCA), cannabidiol

acid (CBDA), and cannabinolic acid (CBNA) are relatively elevated, followed

by cannabigerolic acid (CBGA), cannabichromenic acid (CBCA), can-

nabinodiolic acid (CBNDA), Δ9-tetrahydrocannabivarin (Δ9-THCV), and

cannabidivarin (CBDV) (Andre et al., 2016; Izzo, Borrelli, Capasso, Di

Marzo, & Mechoulam, 2009). THCA is the major cannabinoid in the

drug-type Cannabis, while CBDA predominates in fiber-type hemps. Both

THCA and CBDA slowly lose their acidic function (decarboxylate) in the

plant on heating and become tetrahydrocannabinol (THC) and cannabidiol,

acquiring psychoactive properties, in the case of THC.

Phytocannabinoids are described in detail elsewhere (see chapter “Canna-

bis Pharmacology: The Usual Suspects and a Few Promising Leads” by Russo

and Marcu in this book). Among them, Δ9-THC accounts for most of the

psychoactive effects of Cannabis. This compound was isolated, described

and later synthesized in the 1960s (Mechoulam & Hanus, 2000) opening

the door to the identification of the specific receptors for this substance in
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animals in the 1980s and 1990s (Devane, Dysarz, Johnson, Melvin, &

Howlett, 1988; Matsuda, Lolait, Brownstein, Young, & Bonner, 1990;

Munro, Thomas, & Abu-Shaar, 1993). It has been demonstrated that THC

binds to G coupled-protein receptors at cell membranes. These receptors,

named CB1 and CB2, are widely distributed throughout the body, CB1 being

predominately expressed in the central nervous system and CB2 in the

immune system. As such, the CB1 receptor is responsible for the psychoactive

effects of THC, while the CB2 receptor is involved in immune function

(Pacher & Kunos, 2013; Pertwee et al., 2010). A more detailed review on

the pharmacology of CB1 and CB2 receptors can be found in the chapter

“CB1 and CB2 Receptor Pharmacology” by Howlett and Abood.

The description of cannabinoid receptors led to the finding of their

endogenous ligands, termed endocannabinoids, among which two have

been more widely studied: N-arachidonoylethanolamine (anandamide)

and 2-arachidonoylglycerol (2-AG). Both endocannabinoids are formed

on demand from membrane lipid precursors by specific synthesizing

enzymes. For a wider description on the turnover of endocannabinoids,

please see the chapter “Endocannabinoid Turnover” by Fowler et al.

The ensemble of cannabinoid receptors, their endogenous ligands

(endocannabinoids), and their enzymatic machinery form the core of what

is called the endocannabinoid system (ECS). It must be taken into consid-

eration, however, that this definition of the ECS is currently under debate

and may only reflect the axis of a more complex structure. In a wider sense,

the ECS may also include other members structurally related to anandamide

and 2-AG, but that do not bind to CB1 or CB2 receptors with high affinity.

These compounds (for example, palmitoylethanolamine, oleamide, or

n-arachidonoyl dopamine) may behave as allosteric modulators of CB1/CB2

receptors, or modulate synthesis, degradation, or uptake of anandamide

or 2-AG (Di Marzo & Piscitelli, 2015; Ligresti et al., 2016). Both

phytocannabinoids and endocannabinoids may also activate receptors other

than CB1 and CB2, as with the transient receptor potential cation

channels—TRP or GPR55 (Di Marzo & Piscitelli, 2015; Ligresti et al.,

2016). These receptors and their natural ligands are also considered related

to the wider endocannabinoid family.

The description of cannabinoid receptors and enzymatic machinery trig-

gered the development of whole families of synthetic compounds in the sea-

rch for new pharmacological tools and new potential therapeutic drugs.

Among these synthetic compounds developed are (1) new CB1/CB2 recep-

tor agonists and antagonists; (2) inhibitors of the hydrolase enzymes (FAAH

and MAGL) or of endocannabinoid transport and uptake, in order to
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potentiate EC signaling; (3) silent allosteric modulators of CB1/CB2 recep-

tors. A detailed description of the current status of all these compounds may

be found in other chapters of the current book (see chapter “CB1 and CB2

Receptor Pharmacology” by Howlett and Abood, chapter “Functional

Selectivity at Cannabinoid Receptors” by Priestley et al., and chapter

“Endocannabinoid Turnover” by Fowler et al.).

Some of these synthetic compounds (analogs of Δ9-THC,

aminoalkylindoles, and other cannabinoid analogs) have been detected in

preparations of the new type of drug generically called “Spice.” Spice or

“fake cannabis” is a general term used for various herbal mixtures of

unknown exact ingredients or chemical composition (Seely, Lapoint,

Moran, & Fattore, 2012; Vemuri & Makriyannis, 2015). Product testing

of Spice formulations shows that cannabinoid constituents and dosages

can vary greatly between products, lots, and even within the same package

(Seely et al., 2012). Some of the synthetic cannabinoids (SCB) detected in

Spice belong to the “JWH” series initially synthesized by Huffman and

Padgett (2005), such as JWH-018 (1-pentyl-3-(1-napthoyl)indole). JWH-

018 can be easily synthesized and shows high efficacy at CB1 receptors

(Huffman & Padgett, 2005). Other compounds detected in Spice include

HU-210, developed at the Hebrew University in the 1960s, and the

cyclohexylphenol (CP) cannabinoids developed by Pfizer in the 1970s

(Seely et al., 2012), both of which have some structural similarities to

Δ9-THC but are more potent, full agonists at CB1 receptors. Compounds

first synthesized by Alexandros Makriyannis (AM compounds) have also

been detected in Spice (Hudson & Ramsey, 2011). Different preparations

of Spice have highly variable content including compounds like JWH-

018, JWH-073, CP-47,497, JWH-081, JWH-122, JWH-210, and

AM-2201. In addition, endocannabinoid-like molecules such as

N-palmitoylethanolamine (PEA, endogenously synthesized by the same

enzyme as anandamide, NAPE-PLD), have been identified in Spice prepa-

rations (Seely et al., 2012).

2. SIGNALING PATHWAYS ASSOCIATED TO SCB

While the cannabinoid CB1 receptor is one of the most abundant

G protein-coupled receptors present in the central nervous system

(Matsuda et al., 1990), the CB2 receptor is located predominantly in the

immune system (Munro et al., 1993) and is barely found in the CNS. Both

CB1 and CB2 receptors are preferentially coupled to pertussis toxin-sensitive
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Gi/o proteins to inhibit adenylate cyclase and cyclic AMP–protein kinase

A (PKA) signaling (Howlett, Johnson, Melvin, & Milne, 1988). However,

coupling to Gs or Gq/11 of CB1 receptors has also been reported (Glass &

Felder, 1997; Lauckner, Hille, & Mackie, 2005).

The signaling pathways triggered by natural-, synthetic-, and endo-

cannabinoids, through CB1 receptors, have been the focus of extensive

research efforts. Upon receptor engagement, cannabinoids activate, among

other cascades, phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and mitogen-

activated protein kinases (MAPK) such as extracellular signal-regulated kinase

(ERK1/2), p38MAPKs, and JUNN-terminal kinases (JNKs) involved in cell

proliferation and survival (Piomelli, 2003). Activation of CB1 receptors in the

neuronal presynaptic terminal inhibits L, N, and P/Q type voltage-activated

calcium channels and stimulates inwardly rectifying potassium channels to

reduce neurotransmitter release (Kano, Ohno-Shosaku, Hashimotodani,

Uchigashima, & Watanabe, 2009). Thus, depolarization of a postsynaptic

neuron induces short-term depression of GABA release from axon terminals

innervating the same postsynaptic neuron. Further, antagonists of CB1

receptors block this depolarization-induced suppression of inhibition (DSI)

at hippocampal GABAergic synapses, suggesting that an endocannabinoid

was the retrograde messenger involved in this synaptic plasticity

(Katona & Freund, 2012). In addition, CB1 receptors also signal from glial

cells to neurons to modulate neurotransmission. In fact, in hippocampal

astrocytes CB1 receptors are activated by SCB ligands as well as by

endocannabinoids released by neurons (Navarrete & Araque, 2008). This

activation increased astrocyte calcium levels from internal stores and the

intracellular signaling pathway underlying this effect exhibited specific

characteristics. In contrast to the canonical coupling to Gi/o proteins,

the calcium elevations are mediated by CB1 receptors coupled to Gq/11

proteins that activate phospholipase C and produce inositol triphosphate

(Navarrete, Dı́ez, & Araque, 2014).

Cannabinoids promote ERK phosphorylation in the hippocampus,

CB1-transfected CHO cells, and human astrocytoma cells (Galve-

Roperh, Rueda, Gómez del Pulgar, Velasco, & Guzmán, 2002). In primary

cortical neurons, the CB1 receptor agonist methanandamide evoked a

biphasic model of ERK activation and required activation of Gq/11

(PLC/PKC) and Gi (Src, Fyn), the magnitude and duration of ERK activa-

tion have been causally linked to specific cellular responses in neurons and

neural cells such as the induction of cell proliferation and neuronal matura-

tion (Asimaki & Mangoura, 2011).
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The SCB agonists WIN 55,212-2 and HU-210 protect primary astro-

cytes from ceramide-induced apoptosis via activation of the PI3K/Akt path-

way, this prosurvival effect also depends on the modulation of the ERK

pathway (Gomez del Pulgar, de Ceballos, Guzman, & Velasco, 2002).

Whereas in N1E-115 mouse neuroblastoma cells ERK activation by

WIN 55,212-2 is mediated by CB1 receptor signaling, but required several

basally activated pathways including PI3-kinase, Src, and protein phospha-

tases, but receptor-stimulated inhibition of adenylate cyclase/PKA is abso-

lutely required for ERK activation (Davis, Ronesi, & Lovinger, 2003). In

oligodendrocytes, a role for the ERK/MAPK cascade in endocannabinoid-

induced oligodendrocyte maturation has been proposed (Gomez et al.,

2010), while the synthetic agonists ACEA, JW133, and HU-210 acceler-

ated oligodendrocyte progenitor differentiation through a mechanism

dependent on the activation of the PI3K/Akt and mTOR signaling path-

ways (Gomez et al., 2011). Moreover, the proliferative action of the PI3K/

Akt cascade has been investigated in detail in neural stem cells. In cerebellar

granule cell precursors HU-210-induced proliferation requires PI3K/Akt/

GSK3β signaling. CB1 receptor activation phosphorylates and inhibits

GSK3β thus β-catenin is stabilized and translocates to the nucleus, modu-

lating the expression of genes such as cyclin D1, which is involved in the

regulation of cell proliferation (Trazzi, Steger, Mitrugno, Bartesaghi, &

Ciani, 2010).

Finally, receptor desensitization has been proposed as a mechanism that

terminates cannabinoid agonist signaling and requires phosphorylation by a

G protein-coupled receptor kinase and interaction of the phosphorylated

receptor with β-arrestins. However, recent reports indicate that β-arrestins,
while hindering G-protein signaling, act as scaffold proteins for the

endocytic machinery and signaling molecules such as the MAP family of

kinases and initiate a second wave of signaling at the cell surface

(Nogueras-Ortiz & Yudowski, 2016). In addition, a final wave emerges

from receptors localized at intracellular compartments, such as endosomes

and lysosomes (Rozenfeld & Devi, 2008).

3. STRUCTURAL CLASSIFICATION OF SCB

Synthetic cannabinoids (SC) have gone through numerous iterations of

modification to their chemical structures making their forensic detection and

identification difficult (Presley, Gurney, Scott, Kacinko, & Logan, 2016). In
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2008, the European Monitoring Centre for Drugs and Drug Abuse

(EMCDD; http://www.emcdda.europa.eu/publications/drug-profiles/

synthetic-cannabinoids) formally monitored these SCB products in order

to control the synthesis, trade, distribution, and human consumption of these

substances due to their detrimental health effects (Castaneto et al., 2014;

EMCDDA, 2009). To date, novel psychoactive substances (NPS) have been

detected in over 100 countries/territories (Schifano, Orsolini, Duccio

Papanti, & Corkery, 2015), with a specific high impact in the European

teenage population (over 5% of 19–24 years old) (EMCDDA, 2014). At pre-

sent, the EMCDD and the United Nations Office on Drugs and Crime

(UNODC) monitor over 450 NPS of which over 160 substances are

SCB (EMCDDA, 2015; Scocard, Benyamina, Coscas, & Karila, 2017;

Zawilska & Wojcieszak, 2014). Over 10 recognizable chemical families

of SCB are known. Forensic/toxicological analysis, identification, and char-

acterization of the new and/or relatively unknown SCB is performed by

using advanced analytical tools such as nuclear magnetic resonance

(NMR), bioinformatics, computational chemistry, electrospray ionization,

and high-resolution liquid-chromatography tandem mass-spectrometry

(HR-LC–MS/MS) tools (Adamowicz & Tokarczyk, 2016; Dunne &

Rosengren-Holmberg, 2016; Ford & Berg, 2016; Sahai et al., 2016).

The use of in silico and chemical biochemistry approaches are essential in

predicting and identifying the metabolites of SCB and drug subclasses that

continue to appear (Presley et al., 2016; Strano-Rossi et al., 2014).

A chemoinformatic approach permit a broad screening of SCB to manage

and unify analytical data from multiple techniques and instruments, and

combine it with chemical and structural information (Lobo Vicente et al.,

2016; Sahai et al., 2016).

The compound CP47497 and other indoles were first used as analgesics,

in different medicinal chemistry programmes from Sterling Winthrop and

Charles Pfizer (CP) company (now Pfizier Inc.) in the 1970s–1980s. The
fact that many of these compounds bind to cannabinoid receptors was dis-

covered subsequently (Seely, Prather, James, & Moran, 2011) but have only

recently found their way into Spice blends (Calles, 2013).

As described earlier, the synthesis of structurally distinct molecules that

bind with high affinity to cannabinoid receptors is a relatively recent phe-

nomena that started with the synthesis of the CB1 full agonist naphtoyindole

JWH-018 (1-pentyl-3-(1-naphtoyl)indole) (Huffman, Dai, Martin, &

Compton, 1994; Huffman and Padgett, 2005).
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In March 2011, the Drug Enforcement Agency (DEA, USA) classified as

schedule class I, five SCB: JWH-018, JWH-073, JWH-200, CP-47,497,

and Cannabicyclohexanol (Drug Enforcement Administration, 2010).

As the synthesis of novel SCB is an area in constant development, it is

difficult to establish a clear structural classification. Moreover, to date,

SCB can be classified into several major structural groups as shown later,

depending on their structural evolution as described in Table 1 (Figs. 1–6).
Furthermore, there are several analytical difficulties posed by the task of

identifying SCB (i.e., forensic data are limited) because these SCB are not

controlled substances in most EU Member States (EMCDDA, 2009). In

the United Kingdom, the Physchoactive Substances Act (2016) effectively

banned the production, sale, and possession of so-called legal highs

including SCB.

A common structural feature of the SCB is a side-chain, where optimal

activity for binding CB1 cannabinoid receptors for psychotropic activity

requires more than four and up to nine saturated carbon atoms (see

Pertwee et al., 2010, for review). An interesting on-line resource from

the EMCDDA, Interactive can be found at the following link: (http://www.

emcdda.europa.eu/topics/pods/synthetic-cannabinoids). The resource is

helpful in facilitating understanding of the chemistry of the SCB and explains

the chemical make-up of these compounds.

The structure of the majority of SCB can be divided into four key

parts: the core (indole or indazole core) and substituents, the link section

(amide, ketone, or ester linker), the ring (naphthyl, quinolinyl, adamantyl,

or tetramethylcyclopropyl ring) and substituents, and the tail section.

Table 1 Structural Classification of Synthetic Cannabinoids

1. Naphthoylindoles, Naphthylmethylindoles, Naphthoylpyrroles,

Naphthylmethylindenes: JWH-007, JWH-018, JWH-073, JWH-200, JWH-398,

AM-1221, AM-2201 (Fluoroalkyl derivative from JWH018), AM-694,

Win-55,212-2

2. Phenylacetylindoles (i.e., benzoylindoles): JWH-250, RCS-8

3. Cyclohexylphenols: CP-47947, CP-55940

4. Tetramethylcyclopropylindoles: UR-144, XLR-11 (Fluoroalkyl derivative from

UR-144)

5. Adamantoylindoles: 5F-AKB-48, STS-135

6. Indazole carboxamides: AB-PINACA, AB-FUBINACA

7. Quinolinyl ester: PB-22
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Fig. 1 The structures of four naphthoylindoles with varying degrees of functional selec-
tivity for CB1 and CB2 cannabinoid receptors: JWH-018, JWH-073, AM2201, and Win
55,212-2.
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Fig. 2 The structures of the aminoalkylindole JWH-200 and the synthetic cannabinoid
JWH-398.
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Other common features of the SCB include a hydrophobic alkyl group

attached to the indole or indazole ring (Ford, Tai, Fantegrossi, &

Prather, 2017).

Adamantyl-cannabinoids are currently the most frequently used class of

SCB in the United Kingdom, particularly AKB-48, 5F-AKB-48, and STS-

135 (McIlroy, Ford, & Khan, 2016).

N

RCS-8 JWH-250

O

O

N

O

O

Fig. 3 The structures of the phenylacetylindoles RCS-8 and JWH-250.

CP-55940

CP-47947

HO

OH

OH

OH

HO

Fig. 4 The structures of two cyclohexylphenols with varying degrees of selectivity for
cannabinoid receptors: CP-47947 and CP-55940.
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4. CANNABINOID/CB1 RECEPTORS INVOLVEMENT IN
MEMORY REGULATION AND PSYCHOSIS

4.1 CB1 Receptor Role in the Regulation of Memory
and the Effects of Exogenous Cannabinoids

Endocannabinoids (endocannabinoid) and their central CB1 receptors are

richly present within the brain, including the basal ganglia subregions,

hippocampus, amygdala, and cerebellum, which is indicative of the wide-

ranging roles for endocannabinoid and CB1 receptors in animals and

humans (e.g., Herkenham et al., 1991; Mackie, 2008). The distribution

of CB1 receptors is consistent with their regulatory roles in the brain, as

CB1 receptors are involved in a range of important physiological functions

such as movement control, pain processing, brain development and matu-

ration, and learning and memory (Mackie, 2008; Svı́zenská, Dubový, &

Sulcová, 2008).

O O

N
NF

NFN

N

O
NH

UR-144 XLR-11

STS-1355F-AKB-48

F

O
NH

Fig. 5 The structures of two tetramethylcyclopropylindoles (UR-144 and XLR-11) and
two adamantoylindoles (5F-AKB-48 and STS-135) with varying degrees of selectivity
for cannabinoid receptors.
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Learning and memory regulation involves neuronal networks that oper-

ate by means of glutamate (excitatory) and GABA (γ-aminobutyric acid,

inhibitory) and that are modulated by endocannabinoids. Endocannabinoids

act within both presynaptic and postsynaptic neuronal compartments and

exert neuroplastic changes of synaptic function in glutamatergic and

GABA-ergic pathways. It has been established that neuronal activity triggers

postsynaptic synthesis and release of endocannabinoids that act retrogradely

across the synapse and bind to presynaptic CB1 receptors; it is the nature of

the neural network involved that decides about the various neurobiological

effects of endocannabinoids mediated by CB1 receptors. Thus, their actions

in the brain regions involved in learning and memory, such as the hippo-

campus (Davies, Pertwee, & Riedel, 2002), amygdala, and dorsal striatum

(Goodman & Packard, 2015) necessarily translate into changes in learning

and memory-related functions. Of relevance to memory regulation, endo-

cannabinoid release is affected by glucocorticoids as hormonal mediators of

the response to stress, which act at glucocorticoid receptors richly expressed

in the hippocampus and amygdala. Glucocorticoids activate postsynaptic

N

F

O

O

NN

PB-22

AB-PINACA

AB-FUBINACA

N

O
NH

NH2

O

N

N

O
NH

NH2

O

Fig. 6 The structures of two indazole carboxiamides (AB-PINACA and AB-FUBINACA)
and one quinolinyl ester (PB22).
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glucocorticoid receptors that trigger the postsynaptic synthesis of endo-

cannabinoids, which then act retrogradely via presynaptic CB1 receptors

on glutamatergic terminals and this triggers a signaling cascade which

inhibits glutamate transmission, leading to a reduction in the neural activity

in the hippocampus and amygdala (Di, Malcher-Lopes, Halmos, & Tasker,

2003). It should be said at this stage that not only can endocannabinoids act at

CB1 receptors but also exogenous cannabinoids, including THC and their

synthetic forms.

While it has been accepted that presynaptic hippocampal CB1 receptors

play a role in learning and memory, in line with the fact that the hippo-

campus has long been implicated in these phenomena, there is a growing

interest in the function of mitochondrial cannabinoid receptors as CB1

receptors are located not only in the presynaptic membrane but also in

neuronal mitochondria. Activation of mitochondrial CB1 receptors can

cause an acute change in the energy status, with reductions in the rate

of mitochondrial respiration and further long-term consequences of mito-

chondrial dysfunction, including neuronal aging and degeneration. Thus,

the role of mitochondrial CB1 receptors has emerged as an interesting

aspect in the neurobiology of learning and memory (Hebert-Chatelain

et al., 2016).

Activation of presynaptic CB1 receptors affects the release of neurotrans-

mitters such as glutamate or GABA in both short-term and long-term

(e.g., review by Puighermanal, Busquets-Garcia, Maldonado, & Ozaita,

2012). Experimental rodent studies in vivo or in vitro, using brain

tissue—most often hippocampal sections, are essential in explaining the role

of the ECS in memory regulation, and the effects of CB1 receptor agonists

and antagonists, acute or chronic. Experimental in vitro approaches have

demonstrated that short-term endocannabinoid actions involve synaptic

plasticity responses such as depolarization-induced suppression of inhibition

(DSI) or depolarization-induced excitation (DSE) (Heifets & Castillo, 2009;

Kano et al., 2009). A long-term inhibition of transmitter release also induces

neuroplasticity as it associates with long-term depression (LTD) of synaptic

activity; LTD at inhibitory synapses can lead to long-term potentiation

(LTP) downstream (Carlson,Wang, & Alger, 2002). The finding that endo-

cannabinoids can facilitate LTP induction in neurons augments our under-

standing of the behavioral effects of endocannabinoids in health and under

the influence of exogenous cannabinoids.

Exogenous cannabinoids such as of THC administered in the course of

experimental interventions in animal and human studies, or as recreational
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drugs in humans, are presumed to interact with the brain ECS at higher con-

centrations than those of endogenous modulators. Thus exogenous canna-

binoids, including new SCB that bind to CB1 receptors, can affect

endocannabinoid-dependent synaptic plasticity including LTP or LTD,

and change behavioral learning processes as observed in acute and long-term

treatments (Puighermanal et al., 2012).

A single dose of THC has been shown to abolish endocannabinoid-

induced LTD in rat hippocampus, while chronic administration of THC

abolishes LTP generated by high-frequency stimulation in vitro, with

reductions in glutamate release in rat hippocampal slices. In the hippocam-

pus in vivo, THC preferentially decreases GABA release and has less effect

on glutamate release, as there are more CB1 receptors in GABA-ergic neu-

rons and those CB1 receptors have a higher sensitivity to cannabinoid ago-

nists. Therefore, memory impairment caused by exogenous cannabinoids

could be predominantly a consequence of a disruption of hippocampal net-

work function that is mediated by synchronized GABAergic activity (for

review, see Puighermanal et al., 2012).

A useful experimental tool in studies on the role of the ECS in learning

and memory is a genetic modification whereby the Cnr1 gene that encodes

the CB1 receptors is deleted in mice. Mice lacking CB1 receptors have

increased hippocampal LTP and improved memory retention when com-

pared with the wild strain (Bohme, Laville, Ledent, Parmentier, &

Imperato, 2000; Martin, Ledent, Parmentier, Maldonado, & Valverde,

2002). Interestingly,mature and oldCnr1 knockoutmice, unlike young ones,

tend to display deficits in procedural learning, spatial memory, and social rec-

ognition abilities. These cognitive deficits associate with neuronal losses in the

hippocampal areas CA1 and CA3 that are involved in memory consolidation,

consistent with the neuroprotective effects mediated via the CB1 receptor.

On the other hand, CB1-deficient mice show significantly impaired short-

term and long-term extinction of memory, as tested in auditory fear-

conditioning paradigms, although no effects have been found in their mem-

ory acquisition and consolidation (Marsicano et al., 2002). Similar effects have

been observed in control (wild strain) mice treated with the CB1 receptor

antagonist SR141716A (rimonabant), which confirms that the CB1 receptor

is paramount in the process of memory extinction (Marsicano et al., 2002).

Extinction of traumatic/aversive memories is essential in the recovery from

posttraumatic stress disorder (PTSD) and maladaptive rumination in clinical

depression, where persistent negative memories can cause retraumatization

and relapse of mental illness. There is growing evidence that exogenous
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cannabinoids could exert normalizing effects on aversive memories in PTSD

and phobias.

While there is consensus that CB1 receptors located in the hippocampus

play a necessary role in the memory impairments caused by cannabinoid

agonists, including THC (e.g., Wise, Thorpe, & Lichtman, 2009) other

brain regions also contribute to memory regulation with their CB1 recep-

tors. For example, the prefrontal cortex plays a role in CB1 receptor-

mediated memory as demonstrated in a study where THC infusion into

the prefrontal cortex disrupted rat memory in a radial arm maze (Silva de

Melo et al., 2005). It should be said, however, that in situ infusion of exog-

enous cannabinoids may bring about different effects to those observed after

a systemic administration (for review, see Zanettini et al., 2011).

4.2 Cannabinoids and Dorsal Striatal Memory
CB1 receptors are also present in the striatum; they are localized on presyn-

aptic terminals of glutamatergic corticostriatal projection neurons and

GABA-ergic medium spiny neurons. CB1 receptors have not been found

on cholinergic interneurons in the striatum nor nigrostriatal projections

to the striatum. The ECS plays an important role in the types of learning

and memory mediated by the dorsal striatum, which includes stimulus–
response (S–R) habit memory. Studies of this kind of memory involve maze

learning and instrumental learning tasks in mostly rodents although they can

be adapted to humans. There is a growing body of evidence that manipu-

lating the ECS by means of either infusion or a chronic exposure to exog-

enous cannabinoids can alter dorsal striatum-dependent habit memory (for

review, see Goodman & Packard, 2015). Exogenous cannabinoid agonist or

antagonist administration associates with impairment of dorsal striatum-

dependent S–R habit memory, while THC tolerance can associate with

enhancement of that type of memory. It is a complex area of research as

appetitive paradigms also engage the ventral striatum. As in the case of hip-

pocampal memory, endocannabinoid-dependent striatal memory implicates

CB1 receptors with synaptic plasticity (Goodman & Packard, 2015).

It is appropriate to note that the very wide range of endocannabinoid

roles superimposes with the complexity of the neuronal circuits involved

with their other neurotransmitter systems that respond to endo- and

exocannabinoid actions as a matter of secondary effects. This justifies an

opinion that the effects of the ECS also depend on environmental conditions

when it comes to memory impairment produced by exogenous
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cannabinoids (Zanettini et al., 2011). On the basis of the limited human

studies on the effects of SCB on learning and memory, it would be fair

to say that SCB bioactivity is mediated via CB1 receptor agonism in humans

(Gunderson, Haughey, Ait-Daoud, Joshi, & Hart, 2012).

4.3 Cognitive Changes in SCB Users
A recent study by Cohen et al. (2017) has assessed executive functions in a

group of participants comprising SCB users, recreational cannabis users and

nonusers by means of cognitive function tests, the Stroop word-color task,

and the n-back and free-recall memory tasks. SCB users have performed sig-

nificantly worse than the other participants in all the tests applied. In addi-

tion, they have had higher depression and anxiety scores when compared

with the two other groups. Thus, executive functions were impaired in

SCB users (Cohen et al., 2017). It is consistent with CB1 receptor

involvement.

4.4 Role of CB1 Receptors in Psychosis
Synaptic activity closely involves membrane potential changes and gives

rise to transmembrane currents that can be measured in the extracellular

field to which all neuron types contribute; they time their action potentials

with millisecond precision depending on their membrane potential fluc-

tuations (Buzsáki & Wang, 2012). The spatial alignment of neurons and

the temporal synchrony of neuronal firing determine the strength of the

extracellular field. The synchrony, which results from network oscilla-

tions, determines the different magnitudes of local field potentials that rep-

resent different brain states (Buzsáki, Anastassiou, & Koch, 2012). In the

intact brain, endogenous oscillations result in high-frequency patterns,

of which most ubiquitous are rhythms in the gamma-frequency range

(30–90 Hz) (Buzsáki &Wang, 2012). Another rhythm of relevance to psy-

chosis is theta oscillations (4–7Hz) that represent the net activity of the

hippocampus; they are generated mainly by the entorhinal cortical inputs.

Theta rhythm is thought to be critical for temporal coding and decoding of

active neuronal ensembles and modifications of synaptic strength (Buzsáki,

2002). It has been known that high level cognitive activities, such as work-

ing memory, closely associate with gamma oscillations in the prefrontal

cortex (Fries, 2009). Typically, patients with schizophrenia who show

working memory impairments have also reduced gamma and theta oscil-

lations; deficits in cortical oscillations and impairments of memory
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associate in schizophrenia and psychosis (Minzenberg et al., 2010; Skosnik,

Cortes-Briones, & Hajós, 2016). There is consensus that abnormal neural

synchrony and impaired auditory gating indicate of distorted information

processing in patients with psychosis.

Interestingly, exogenous cannabinoids, such as THC can also lead to

disruptions in neural oscillations, as shown in human studies (for review,

see Skosnik et al., 2016). It is of direct relevance to psychotic-like behavior

observed after exogenous cannabinoid exposure in humans and can be

explained by the fact that oscillations in the cortical and limbic brain areas,

including the hippocampus, are controlled by CB1 receptors. There are

lines of evidence derived from animal experiments that activation of

CB1 receptors interferes with neuronal network oscillations and impairs

sensory gating function in the cortical and limbic brain areas, including

the hippocampus. For example, a CB1 receptor agonist, CP-55940, has

been found to disrupt auditory gating and interrupt theta field potential

oscillations in the hippocampus and entorhinal cortex in anesthetized

and awake rats. In addition, novelty-induced theta and gamma activities

were also significantly diminished by CP-55940 in the same material

(Hajós, Hoffmann, & Kocsis, 2008). Findings of this kind have a transla-

tional value and support the idea that activation of CB1 receptors by exog-

enous cannabinoids impairs theta and gamma oscillations that are known to

be affected in cannabis abuse-related psychosis spectrum disorders in vul-

nerable subjects (Skosnik et al., 2016). Case studies of psychotic SCB users

are described later.

To sum up, there are similarities between disruptions of neuronal net-

work oscillations in psychosis and those in psychosis-like conditions trig-

gered by exogenous cannabinoids (e.g., THC). There is evidence that

activation of CB1 receptors disrupts neuronal network oscillations. Exoge-

nous cannabinoids that act as CB1 receptor agonists, which includes new

synthetic forms, can trigger psychosis-like behavior through this

mechanism.

5. CLINICAL ADVERSE EFFECTS OF SCB

The health risks associated with using SCB cannot be assumed to be

similar to those from taking cannabis because, as described elsewhere, SCB

tend to be much more potent at CB1 receptors and do not contain

cannabidiol or cannabinol (among others), which mitigates against many
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adverse effects. The adverse clinical effects of SCB have previously been

reviewed by Cooper (2016), and case reports are the main source of informa-

tion. The main findings are that acute SC intoxication is usually characterized

by tachycardia, hypertension, visual and auditoryhallucinations,mydriasis, agi-

tation and anxiety, tachypnea, nausea, and vomiting (Heath, Burroughs,

Thompson, & Tecklenburg, 2012; Schneir, Cullen, & Ly, 2011). However,

in some cases SC misuse can precipitate stroke, seizures (Harris & Brown,

2013; Hermanns-Clausen, Kneisel, Szabo, & Auwarter, 2013; Hoyte et al.,

2012; McQuade, Hudson, Dargan, et al., 2013; Spaderna, Addy, &

D’Souza, 2013; Winstock & Barratt, 2013) and what appears to be serotonin

syndrome, possibly mediated through mild MAOI (Rosenbaum, Carreiro, &

Babu, 2012).

5.1 Adverse Cardiovascular Effects
Although quite uncommon, the use of cannabis is associated with some

serious cardiovascular conditions (Thomas, Kloner, & Rezkalla, 2014)

and case studies highlighting coronary artery thrombosis, vasospasm, and

myocardial infarction have been reported (Gunawardena, Rajapakse,

Herath, & Amarasena, 2014; Mittleman, Lewis, Maclure, Sherwood, &

Muller, 2001; Tatli, Yilmaztepe, Altun, & Altun, 2007). It is likely that

these effects are mediated through TCH evoked increases in catechol-

amines, increased cardiac workload (with increased heart rate and blood

pressure) with decreased supply of oxygen (Aryana & Williams, 2007).

Given that SC have much higher affinity at CB1 receptors, and potentially

have effects at other receptors, we may expect more frequent cardiovascular

problems with SC. SC use is associated with acute myocardial infarction,

found in both adults and children (Ibrahim, Al-Saffar, & Wannenburg,

2014; McKeever et al., 2015; Mir, Obafemi, Young, & Kane, 2011; Tse,

Kodur, Squires, & Collins, 2014).

The SC “K2” is associated with tachycardia (Chinnadurai, Shrestha, &

Ayinla, 2016). McKeever et al. (2015) reported a 16-year-old male who had

taken the SC “K2” 60–120 min prior to complaining of sustained substernal

pressure, dyspnea, nausea, and vomiting; ECG revealed ST elevations and

increased troponin and creatinine kinase MB. The SC “Black Mamba,”

smoked 3h prior to symptoms onset, led to myocardial infarction with

ST elevation and high Troponin-T levels. Analysis revealed that the sub-

stance ingested was an adamantyl SC (McIlroy et al., 2016).
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5.2 Adverse Pulmonary Effects of SCB
Long-term SCB users have reported chronic coughs with pneumothorax

and diffuse pulmonary infiltrates were also reported (Froberg & Bauer,

2012). Alhadi et al. (2013) reported on a 21-year-old male with a cannabis

habit who had been using SC for 4 months prior to presenting with a

2 month history of chronic cough. Laboratory workup suggested that the

diffuse pulmonary infiltrates were probably inflammatory-mediated, possi-

bly through macrophage activation. The authors confirmed SC presence

through blood, urine, and saliva testing with AM-2201, JWH-122,

JWH-210, and JWH-018 all present, but could not rule out allergic alveolitis

caused simply by heat or smoke particulate inhalation. Similarly, Bajantri

et al. reported the case of a 21-year-old woman, also a long-term cannabis

user, who had started smoking SC (K2) in the last 2 months and who pres-

ented with nausea, vomiting, and upper abdominal pain. Chest CT revealed

pneumomediastinum, hypothesized to be secondary to SC use and increased

alveolar pressure leading to barotrauma. Another case report described a

29-year-old man presenting with severe agitation after smoking “K2.” Tests

revealed fever and tachycardia, but also leukocytosis and interstitial infiltrates

on chest radiography (Chinnadurai et al., 2016). Taken together, these stud-

ies suggest that SC can cause adverse pulmonary events not seen with

cannabis use.

5.3 Acute Kidney Injury From SCB
In a case series, Bhanushali, Jain, Fatima, Leisch, and Thornley-Brow (2013)

described four males, aged 20–30 who had been using “spice” for weeks up

to 2 years, two of whom recently changed supplier, all presenting with nau-

sea and vomiting for more than 2 days. Renal biopsy in three of the patients

revealed acute tubular necrosis. The Centre for Disease Control and

Prevention (USA; 2013) also describe a case series of 16 SC users from a vari-

ety of US states presenting with nausea and vomiting and either flank or

abdominal pain and were found to have high creatinine levels. Patients were

aged between 15 and 33 years and toxicological analysis (urine, blood, or

serum) from seven patients revealed XLR-11N-pentanoic acid metabolites

in four of these seven patients, who had taken the SC products Phantom

Wicked Dreams, Mr. Happy, Clown Loyal, Lava, or Flame 2.0. In another

case series, Buser et al. (2014) identified nine persons (all males, 15–27 years)
who presented to Oregon and Southwest Washington hospitals (USA)
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during May–October 2012 with acute kidney injury after smoking SCB

products. The first patient presented to the emergency department after

4 days of flank pain, emesis, and oliguria examinations revealed hypertension

and bilaterally enlarged hyperechoic kidneys. Symptoms began after

smoking an SC product called “Clown Loyal.” The second patient pres-

ented to an emergency department complaining of abdominal pain, nausea,

and lower back discomfort lasting 3 days. He was euvolemic, but hyperten-

sive. A renal ultrasound revealed bilateral hyperechoic kidneys with poor

corticomedullary differentiation. In cases who recalled their last exposure,

they reported symptom onset between approximately 30min and 24h

(median: 8–12h) after smoking a SC product. The SCs were marketed as

Spice, Mad Monkey, Clown Loyal, Jonny Clearwater, Feel Good, Lava,

and Orgazmo. At least two of these products contained XLR-11. The

authors suggest that this drug is a potent and long-acting agonist at CB2

receptor and that this effect may underlie its kidney toxicity.

5.4 Adverse Neurological Effects of SCB: Psychosis
and Catatonia

An increase in susceptibility to schizophrenia has long been hypothesizedwith

cannabis use, with clear data finally confirmed in Swedish conscripts in 1987

(Andr�easson, Engstr€om, Allebeck, & Rydberg, 1987). It is then no surprise

that SCB have been associated with psychotic events in users and there are

numerous case studies in this area (e.g., Glue, Al-Shaqsi, Hancock, et al.,

2013). Papanti et al. (2013) have reviewed these cases and coined the term

“spiceophrenia” to describe the psychotic symptoms associated with SCB

or “Spice” use. In addition to hallucinations, SCB users can exhibit violent

and self-injuring behavior (Thomas, Bliss, &Malik, 2012). More recent stud-

ies in Europe suggest that 15% of SCB users who report to emergency depart-

ments exhibit psychotic symptoms (Vallersnes et al., 2016), interestingly this

was a lower percentage of patients compared those taking tryptamines,

methylenedioxypyrovalerone, methylphenidate, LSD, or mushrooms.

Catatonia has been seen with SCB use in two patients (Khan, Pace,

Truong, Gordon, & Moukaddam, 2016). One patient (21-year-old male)

used SC (Kush) almost daily for 18 months, while the other (17-year-old

male) used a large quantity of SCB (Spice) over a 2-week period. Both were

admitted with catatonia but no mood disturbance or psychosis. To our

knowledge, there have been no studies linking cannabis use to catatonia.
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5.5 Adverse Neurological Effects of SCB: Seizures, Epilepsy,
and Tremor

Rosenberg, Tsien, Whalley, and Devinsky (2015) have recently reviewed

the role of cannabinoids in epilepsy; highlighting proconvulsive effects

(e.g., THC) and anticonvulsive effects (e.g., cannabidiol). The mechanisms

of action of cannabidiol in epilepsy have also been recently reviewed

(Reddy & Golub, 2016). Much work with SCB in epilepsy has focused

onWIN55,212-2.WIN55,212-22 potentiated the effects of four antiepileptic

drugs (carbamazepine, phenytoin, phenobarbital, and valproate) in mice

(Luszczki et al., 2011). However, the authors also caution that impairment

of motor coordination, long-term memory, and a reduction of skeletal mus-

cular strength was also seen with these combination treatments. The same

group found WIN 55,212-2 in combination with lamotrigine, pregabalin,

and topiramate and second- and third-generation anticonvulsants gabapentin,

levetiracetam but not lacosamide, oxcarbazepine, pregabalin, and tiagabine to

potentiate anticonvulsant effects in mice (Florek-Luszczki et al., 2015;

Luszczki, Wlaz, Karwan, Florek-Luszczki, & Czuczwar, 2013).

Clinical cases are now being described where SC users are presenting

with seizures or convulsions. In the United States, there have been reports

of seizure activity after smoking various SCB and these were likely

JWH-018, JWH-081, JWH-250, and AM-2201 (Lapoint et al., 2011;

Schneir & Baumbacher, 2012; Simmons, Cookman, Kang, & Skinner,

2011). In Europe, McQuade et al. (2013) reported a 20-year-old male

who had smoked “Black Mamba” and quickly went into tonic–clonic con-
vulsions. Urine analysis revealed metabolites of AM-2201.

More recently, seizure-like activity has been seen following SCB use.

Schep, Slaughter, Hudson, Place, and Watts (2015) described a 23-year-old

male, with a history of daily SCB misuse, who had smoked a SCB

(K2) and 6h later appeared to exhibit generalized tonic–clonic seizures. Blood
analysis revealed that the patient had ingested SCB BB-22, AM2233, PB-22,

5F-PB-22, and JWH-122.

Cannabinoids have long been considered as potential treatments for

tremors associated with various CNS disorders, e.g., multiple sclerosis,

Parkinson’s and Huntington’s disease (Arjmand et al., 2015) and this is

described later. However, some studies suggest caution in the use of SCB

in these diseases and in mice the synthetic CB receptor agonists

CP55,940 and HU-210 evoked motor impairment (DeSanty & Dar,

2001). The phytocannabinoid nabilone increases choreatic movements in
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Huntington’s disease (M€uller-Vahl, Schneider, & Emrich, 1999). The

motor centers of the brain including the basal ganglia and the cerebellum

contain very high CB1 receptor levels and thus one might expect SCB to

have a significant effect on such symptoms as tremor.

5.6 SCB Withdrawal Effects
In addition to acute toxic effects of SCB, described earlier, there are serious

withdrawal effects, recently reviewed byMacfarlane and Christie (2015) in a

sample of 47 New Zealanders presenting at detoxification centers. The most

common withdrawal symptoms described were agitation (89% of inpa-

tients), irritability (83%), anxiety (55%), and mood swings (55%) and these

typically appeared within 1–2h of last use but peaked on day 2 of withdrawal
and remain high for at least 5 days. Other common withdrawal symptoms

include nausea and vomiting (44%) and loss of appetite (17%). Elsewhere,

a chronic SCB use withdrawal syndrome has also been described where

symptoms include drug craving, sweating, insomnia, headache, depression,

and anxiety (Nacca et al., 2013; Rominger et al., 2013; Seely et al., 2012;

Vandrey, Dunn, Fry, & Girling, 2012; Zimmermann et al., 2009). There

have been no longitudinal studies so long-term health risks can only be

suggested.

5.7 SCB-Associated Deaths
A small number of drug-related deaths have been reported after SCB inges-

tion; sometimes with SCB ingested alone, or more often in combination

with other drugs. There are some analytically confirmed reports. The

National Program for Substance Abuse Deaths (np-SAD) reports on such

deaths annually. Their most recent report (2014) reveals only about 5–6
SC-related deaths in the United Kingdom with STS-135 present in three

cases (Corkery, Claridge, Loi, Goodair, & Schifano, 2014). In a US case

series in 2012, three males (29, 52, and 57 years old) were found to have

JWH-018 or JWH-073 postmortem (Shanks, Dahn, & Terrell, 2012). In

Japan, a 59-year-old man was found to have MAM-2201 postmortem

(Saito et al., 2013). In Germany, a 36-year-old male was taken to hospital

suffering from seizures, but died shortly after admission. He had been

smoking an SC (Mary Joy Annihilation) which was found to contain

JWH-018 and JWH-210. However, blood analysis revealed JWH-018,
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JWH-122, AM-2201, MAM-2201, UR-144, and amphetamine (Schaefer

et al., 2013). These case studies hint at a possible susceptibility to

SC-related deaths in older users.

5.8 Potential Therapeutic Use of SCB
It may not all be bad news. Cannabis preparations are reported to be anal-

gesic, antiemetic, antiinflammatory, antineoplastic (Patil, Goyal, Sharma,

Patil, & Ojha, 2015), and sedative and more recently have been associated

with lower body mass index and lower incidence of diabetes (Penner,

Buettner, & Mittleman, 2013). As mentioned earlier, SCB were originally

developed for medicinal reasons; to increase analgesic effects seen with

THC. Hill, Williams, Whalley, and Stephens (2012) have reviewed the

use of THC in preclinical animal models and suggest potential use in epi-

lepsy, neurodegenerative diseases, and affective disorders. The role of CB

receptor ligands in disease and their potential therapeutic effects have

recently been reviewed (Alexander, 2016; Arevalo-Martin, Molina-

Holgado, & Garcia-Ovejero, 2016; Gómez-Gálvez, Palomo-Garo,

Fernández-Ruiz, & Garcı́a, 2016; Mursaleen & Stamford, 2016; Velasco,

Hernández-Tiedra, Dávila, & Lorente, 2016) with therapeutic potential

found in numerous diseases including cancer, spinal cord injury, and

Parkinson’s disease.

Admittedly, most of the therapeutic effects are mediated via CB2 recep-

tors but one should never discount the possibility of new therapeutic agents

from unlikely places (Davidson & Molina-Holgado, 2016). For example,

Nutt and colleagues (Danforth, Struble, Yazar-Klosinski, & Grob, 2016)

are advocating MDMA for the treatment of anxiety-related disorders, while

ketamine may be a fast acting antidepressant (Rasmussen, 2016). More

research is needed on these SC, not only to better understand their adverse

effects, but also to assess therapeutic potential, particularly in those drugs

with a better activity profile at CB2 receptors compared to CB1 receptors.

We recently wrote a speculative review where we considered which NPS

might have potential therapeutic value (Davidson & Schifano, 2016). With

respect to SCB such as WIN-55,212-2 and HU-210, they have been found

to be neuroprotective in animal models of Parkinson’s disease (More &

Choi, 2015) and may be useful in Alzheimer’s disease through blocking

microglia activation (Ramı́rez, Blázquez, Gómez del Pulgar, Guzmán, &

de Ceballos, 2005).
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6. CONCLUSION

In this overview, we have reviewed the structure and pharmacology of

SCB and highlighted the detrimental psychological effects of SCB, partic-

ularly on learning and memory and psychosis, and adverse clinical effects

including on the cardiovascular system, brain, and kidneys. However, fur-

ther work is required to identify the downstream targets, which may include

different cellular targets, cell cycle regulatory transcription factors, or inter-

action with other signaling pathways. Taken together, it is clear that many

SCB are extremely dangerous and a major public health problem, especially

in Western societies.

Our present knowledge of SCB highlights important differences

between the detrimental effects of SCB and the physiological relevance

of the ECS as a neuromodulatory network with several protective actions

in the human body. This is not simply related to differential activities at

CB1 and CB2 receptors. We would advocate a ban on the recreational

use of SCB but suggest that much has yet to be learned from the study of

cannabinoids (including SCB), which will undoubtedly be of clinical use.

CONFLICT OF INTEREST
The authors have no conflicts of interest to declare.

REFERENCES
Adamowicz, P., & Tokarczyk, B. (2016). Simple and rapid screening procedure for 143 new

psychoactive substances by liquid chromatography-tandem mass spectrometry. Drug
Testing and Analysis, 8(7), 652–667.

Alexander, S. P. H. (2016). Therapeutic potential of cannabis-related drugs. Progress in Neuro-
Psychopharmacology & Biological Psychiatry, 64, 157–166.

Alhadi, S., Tiwari, A., Vohra, R., Gerona, R., Acharya, J., & Bilello, K. (2013). High times,
low SATS: Diffuse pulmonary infiltrates associated with chronic synthetic cannabinoid
use. Journal of Medical Toxicology, 9(2), 199–206.

Andre, C.M., Hausman, J. F., &Guerriero, G. (2016).Cannabis sativa: The plant of the thou-
sand and one molecules. Frontiers in Plant Science, 7, 19.

Andr�easson, S., Engstr€om, A., Allebeck, P., & Rydberg, U. (1987). Cannabis and schizo-
phrenia: A longitudinal study of Swedish conscripts. Lancet, 330, 1483–1486.

Arevalo-Martin, A., Molina-Holgado, E., & Garcia-Ovejero, D. (2016). Cannabinoids to
treat spinal cord injury. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 64,
190–199.

Arjmand, S., Vaziri, Z., Behzadi, M., Abbassian, H., Stephens, G. J., & Shabani, M. (2015).
Cannabinoids and tremor induced by motor-related disorders: Friend or foe?
Neurotherapeutics, 12(4), 778–787.

Aryana, A., & Williams, M. A. (2007). Marijuana as a trigger of cardiovascular events: Spec-
ulation or scientific certainty? International Journal of Cardiology, 118(2), 141–144.

158 Colin Davidson et al.

http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0005
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0005
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0005
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0010
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0010
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0015
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0015
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0015
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0020
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0020
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0025
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0025
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0025
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0025
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0030
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0030
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0030
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf9005
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf9005
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf9005
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0035
http://refhub.elsevier.com/S1054-3589(17)30042-X/rf0035


Asimaki, O., & Mangoura, D. (2011). Cannabinoid receptor 1 induces a biphasic ERK acti-
vation via multiprotein signaling complex formation of proximal kinases PKCε, Src, and
Fyn in primary neurons. Neurochemistry International, 58, 135–144.

Bhanushali, G. K., Jain, G., Fatima, H., Leisch, L. J., & Thornley-Brow, D. (2013). AKI
associated with synthetic cannabinoids: A case series.Clinical Journal of the American Society
of Nephrology, 8, 523–526.

Bohme, G. A., Laville, M., Ledent, C., Parmentier, M., & Imperato, A. (2000). Enhanced
long-term potentiation in mice lacking cannabinoid CB1 receptors. Neuroscience, 95,
5–7.

Buser, G., Gerona, R., Horowitz, B., Vian, K., Troxell, M., Hendrickson, R., et al. (2014).
Acute kidney injury associated with smoking synthetic cannabinoid. Clinical Toxicology
(Philadelphia, Pa.), 52(7), 664–673.
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