Impurities in Illicit Drug Preparations: 3,4-(Methylenedioxy)amphetamine and 3,4-(Methylenedioxy)methylamphetamine

A. M. A. Verweij Department of General Chemistry Forensic Science Laboratory of the Ministry of Justice Volmerlaan 17, 2288 GD Rijswijk The Netherlands

TABLE OF CONTENTS

I.	INTRODUCTION	138
П.	SYNTHESIS ROUTES	138
	A. The Reductive Amination Route	138
	B. The Leuckart Reaction	140
	C. The Nitropropene Route	140
	D. The Bromopropane Route	140
III.	APPLICATIONS	145
IV.	CONCLUSION	145
	REFERENCES	145
	ABOUT THE AUTHOR	146

Impurities in Illicit Drug Preparations: 3,4-(Methylenedioxy)amphetamine and 3,4-(Methylenedioxy)methylamphetamine

REFERENCE: Verweij AMA: Impurities in illicit drug preparations: 3,4-(methylenedioxy)amphetamine and 3,4-(methylenedioxy)methylamphetamine; *Forensic Sci Rev* 4:137; 1992.

ABSTRACT: Attention is given here to the mass spectral data of impurities present in illicit drug preparations of 3,4-(methylenedioxy)amphetamine and 3,4-(methylenedioxy)methylamphetamine. These "designer" drugs, having emphatic properties, were synthesized following well-known procedures such as the reductive amination route, the Leuckart reaction, and the nitropropene and the bromopropane routes. Based on the structure elucidation of impurities — especially those so-called "route specific" ones — present in these illicit drug preparations conclusions can be drawn about the method of preparation of a drug sample. Furthermore, on the basis of this kind of information methods can be developed for the comparison of drug samples, by which questions about the origin of drug samples can be solved (commonly known as the signature method).

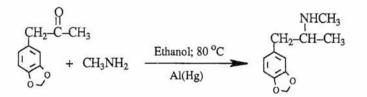
KEY WORDS: Designer drugs, dioxyamphetamine, synthesis, impurities, mass spectrometry.

I. INTRODUCTION

Clandestine manufacturing of 3,4-(methylenedioxy)amphetamine (MDA) analogs and homologs was thoroughly discussed by Dal Cason [1]. Central nerve system activities, synthesis potentialities, ease of chemical handling, and availability of precursors were reviewed. Achieving synthesis of the desired compounds through the reductive amination route (with several hydrogenation steps), the Leuckart reaction, the bromopropane route, the Ritter reaction, the nitropropene route, and the substituted cinnamic acid route were also focused on [1].

As MDA and 3,4-(methylenedioxy)methylamphetamine (MDMA) are nearly always illicitly produced in clandestine laboratories, the preparations produced very often contain precursors, intermediates, or other impurities in addition to the targeted drugs. In fact, the presence of these contaminations derived from different origins in MDA or MDMA preparations can assist in establishing the route of synthesis [2] adopted by the individuals illegally producing these amphetamines.

Structure elucidation of the impurities in MDA and MAMA preparations by mass spectrometric and other methods can be found in literature: the reductive amination route [3,4], the Leuckart reaction [4,5], the nitropropene route [5,6], and the bromopropane route [7,8]. In this article the MS data of the impurities present in preparations of MDA and MDMA are collected and arranged in tables, in according to the synthetic routes used.


The data given here are obtained mostly by low resolution MS using the electron impact (EI) ionization

method. The compounds were identified by consulting MS data bases, synthesis of the assumed compounds, interpretation of the fragmentation properties known in MS, or sometimes by using analytical methods other than MS. For full details the reader is referred to references [2-8].

II. SYNTHESIS ROUTES

A. The Reductive Amination Route

The most frequently used method to prepare MDMA in The Netherlands can be described as a low pressure reductive amination at slightly elevated temperatures [3,4] (Scheme 1).

Scheme 1. Reductive amination

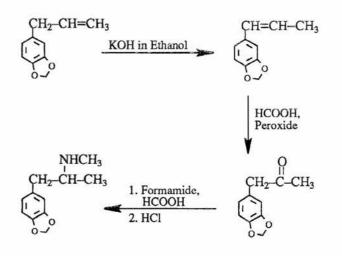
The structural information and eight-peak MS data of the impurities that are reported for this route of synthesis are summarized in Table 1. The compounds given in the table include starting materials and their impurities, hydrogenated compounds originating from starting materi-

Forensic Science Review • Volume Four Number Two • December 1992

_	MW	W Formula	Formula Structure Name	M	ost int	ense E	I ions	and re	elative intensity ^a								
1	136	$C_8H_8O_2$	Q-(T)-CH3	4-Methyl-1,2-(methylenedioxy)benzene	135 100	136 85	77 24	79 15	51 7	106 7	52 5						
2	150	$C_8H_6O_3$	о-Сно	3,4-(Methylenedioxy)benzaldehyde, piperonal	149 100	150 89	121 55	63 40	65 29	61 20	91 15						
3a	162	$C_{10}H_{10}O_2$	O-()-CH2-CH=CH2	4-Allyl-1,2-(methylenedioxy)benzene, safrole	162 100	104 45	131 44	103 32	77 26	78 21	51 18						
3b			Q ← CH=CH-CH₃	1,2-(Methylenedioxy)-4-propenylbenzene, isosafrole													
4	164	$C_{10}H_{12}O_2$	O CH2CH2H3	1,2-(Methylenedioxy)-4-propylbenzene	135 100	77 26	164 24	51 12	79 12	136 10	105 8	91 3					
5	165	$C_9H_{11}NO_2$	CH2NHCH3	3,4-(Methylenedioxy)benzyl-N-methylamine	135 100	42 84	51 75	77 67	136 45	165 40	164 36	79 32					
6	178	$C_{10}H_{10}O_3$	осн ₂ -с-сн ₃	3,4-(Methylemedioxy)phenylpropanone	135 100	77 44	51 21	43 21	178 20	79 19	136 13	105 12					
7	178	$C_{11}H_{14}O_2$	H ₃ CO - (, ,) - CH=CH-CH ₃ H ₃ CO	1,2-(Dimethoxy)-4-propenylbenzene	162 100	163 99	178 70	147 48	135 37	107 32	136 28	91 27					
8	179	C ₁₀ H ₁₃ NO ₂	O CH2CHCH3	1,2-(Methylenedioxy)-4-(2-aminopropyl)benzene, 3,4-(methylene- dioxy)amphetamine, MDA	44 100	136 20	135 8	77 8	51 7	179 3	45 2	78 2					
9	180	$C_{10}H_{12}O_3$	O O O O O C H ₂ CHCH ₃	1-(3,4-Methylenedioxy)phenylpropanol-2	135 100	136 66	77 27	51 20	106 16	180 15	79 13	43 12					
10	191	C ₁₁ H ₁₃ NO ₂	O-CH2-C-CH3	1,2-(Methylenedioxy)-4-(2-N-methyliminopropyl)benzene	56 100	191 17	135 9	77 9	57 9	51 8	105 2	160 1					
11	1 93	$C_{11}H_{15}NO_2$	O-CH2-CH2-CH-CH3	N-Methyl-[1,2-(methylenedioxy)-4-(2-aminopropyl)]benzene, 3,4-(methylenedioxy)methylamphetamine, MDMA, Ecstasy	58 100	136 17	135 15	59 15	77 14	51 9	89 6	193 5					
12	207	C ₁₂ H ₁₇ NO ₂	O CH2-CH2-CH-CH3	N,N-Dimethyl-[1,2-(methylenedioxy)-4-(2-aminopropyl)]benzene	72 100	56 11	44 10	73 10	58 5	70 4	77 4	135 4					
13	221	C ₁₃ H ₁₉ NO ₂	Q-CH2-CH-CH3	N-Ethyl, N-methyl-[1,2-(methylenedioxy)-4-(2-aminopropyl)]benzene	86 100	58 21	87 7	56 4	44 3	77 3	72 2	135 2					

Table 1. Impurities found in MDMA synthesized with the reductive amination

Verweij · Impurities in Illicit Drug Preparations: MDA and MDMA

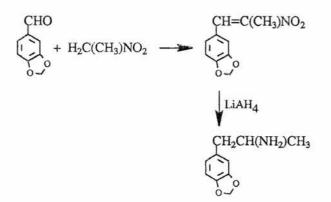

"The relative intensities of the ions listed for each compound are shown on the line below it.

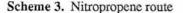
als, and nitrogen-containing compounds — intermediate substances resulting from the reaction of phenylpropanone with impurities in methylamine such as ammonia and higher alkylated amines.

Besides these impurities relating to chemical synthesis and the substances used in it, the MDA and the MDMA preparations can be contaminated by a host of strange compounds [4] including caffeine, cocaine, ketamine, quinine, and amphetamine; the latter substance also contains typical impurities aziridines, pyrimidines, and di-(β -phenylisopropyl)amine.

B. The Leuckart Reaction

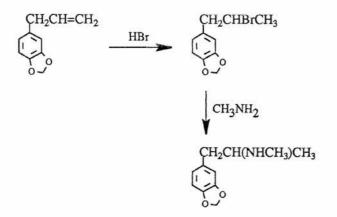
This reaction is seldom used for the synthesis of the substituted amphetamines [4,5]. Using safrole as a starting compound in order to produce the phenylpropanone, the reaction can be schematically depicted as shown in Scheme 2.


Scheme 2. Leuckart reaction


The structural information and eight-peak MS data of the impurities that are reported for this route of synthesis are summarized in Table 2. Again, many impurities derive from starting materials and accompanying chemicals; others originate from condensations between the starting material and the end product.

C. The Nitropropene Route

The condensation reaction (Scheme 3) between nitroethane and piperonal has been adopted for the production of MDA [5,6].


The structural information and eight-peak MS data of the reported impurities that are known for this route of synthesis are summarized in Table 3. Again, the presence of impurities in the starting materials was noticed, while the most of the other impurities found can best be explained by assuming condensation reactions between starting materials, intermediate, and final products.

D. The Bromopropane Route

The reaction of safrole (obtained from sassafras oil) with hydrobromic acid shown in Scheme 4 was intensively studied [7,8].

Scheme 4. Bromopropane route

All bromination products of the other essential oils associated with the starting chemical safrole can be found in MDA or MDMA preparations, depending on the extent of purification attained by the individuals that are produc-

Forensic Science Review • Volume Four Number Two • December 1992

	MW	Formula	Structure	Name	Мо	st inte	nse EI	ions a	nd rel	ative in	ntensit	ya.
1a 1	162	$C_{10}H_{10}O_2$	QCH₂−CH₂−CH₂−CH₂	4-Allyl-1,2-(methylenedioxy)benzene, safrole	162 100	104 45	131 44	103 32	77 26	78 21	51 18	135 18
1b			O-()- CH=CH-CH3	1,2-(Methylenedioxy)-4-propenylbenzene, isosafrole								
2	164	$C_{10}H_{12}O_2$	Q-V. CH2CH2H3	1,2-(Methylenedioxy)-4-propylbenzene	135 100	77 26	164 24	51 12	79 12	136 10	105 8	91 3
3	178	C10H10O3	0-√-)-сн2-с-сн3	3,4-(Methylenedioxy)phenylpropanone	135 100	77 44	51 21	43 21	178 20	79 19	136 13	105 12
4	196	C10H12O4	о (, , ,) - сн-снсн, он он он он он он	Isosafrole glycol	93 100	151 79	65 53	123 18	152 18	196 7	43 7	77 6
5	207	C ₁₁ H ₁₃ NO ₃	сн, сн,	N-Formyl MDA	162 100	135 99	72 82	44 68	77 46	136 28	51 26	105 14
6	341	C ₂₀ H ₂₃ NO ₄	CH2CH-NH-CH-CH2	Di-[1-(3,4-methylenedioxy)phenyl-2-propyl]amine	163 100	135 47	206 41	105 37	133 27	77 23	70 15	79 10
7	355	C ₂₁ H ₂₅ NO ₄	CH ₃ CH ₃ CH ₂ CH-N-CH-CH ₂	Di-[1-(3,4-methylenedioxy)phenyl-2-propyl]methylamine	163 100	220 55	135 46	105 42	58 37	77 28	132 23	79 16

Table 2. Impurities found in MDA synthesized with the Leuckart reaction

t > 0

a The relative intensities of the ions listed for each compound are shown on the line below it.

Verweij • Impurities in Illicit Drug Preparations: MDA and MDMA

	MW	Formula	Structure	Name	М	ost int	ense E	I ions	and re	elative	intens	itya
1	147	C ₉ H ₉ NO	HO	Hydroxyskatole	147 100	146 63	62 23	63 18	39 12	89 9	90 9	6
2	150	C ₈ H ₆ O ₃	сн ₃	3,4-(Methylenedioxy)benzaldehyde, piperonal	149 100	150 92	121 24	63 16	65 15	91 6	118 6	5
3	152	C ₈ H ₈ O ₃	Q-√,-)- сн₂он	3,4-(Methylenedioxy)phenylmethanol	152 100	137 51	93 45	65 35	151 34	122 25	123 25	9 1
4	178	$C_{10}H_{10}O_3$	O-CH2-C-CH3	3,4-(Methylenedioxy)phenylpropanone	135 100	178 46	77 42	51 40	43 22	136 17	105 12	1
5	193	$C_{10}H_{11}NO_3$	Q O CH₂ CH₃	3,4-(Methylenedioxy)benzylmethylketoxime	135 100	193 54	136 34	77 32	146 29	178 23	51 22	11 1
6	207	C ₁₀ H ₉ NO ₄	O $CH_2-N=CH$	1-[3,4-(Methylenedioxy)phenyl]-2-nitro-1-propene	103 100	160 74	207 67	77 54	102 37	51 24	65 19	71
7	283	C ₁₆ H ₁₃ NO ₄	Ţ.Ţ.	N-[β-(3,4-Methylenedioxy)phenylmethyl]- 3,4-(methylenedioxy)benzaldiimine	135 100	178 24	176 16	77 15	136 9	149 6	98 5	4
3	285	C ₁₆ H ₁₅ NO ₄	CH2-NH-CH2	N,N-Di-[3,4-(Methylenedioxy)phenylmethyl]amine	135 100	150 77	136 50	77 21	51 10	106 10	162 9	15
9	298	$C_{17}H_{14}O_5$		Di-[3,4-(methylenedioxy)phenylpropanone]	163 100	135 68	105 32	133 25	77 21	164 11	79 8	13
0	311	C ₁₈ H ₁₇ NO ₄	$\begin{array}{c} CH_{3}\\ CH_{2}CH-N=CH\\ \hline \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{array}{c} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	N-{β-[3,4-(Methylenedioxy)]phenylisopropyl}- 3,4-(methylenedioxy)benzaldiimine	176 100	149 14	177 10	77 10	135 10	91 7	168 6	11
1	339	C ₂₀ H ₂₁ NO ₄	$\begin{array}{c} CH_3 & CH_3 \\ CH_2CH-N=CCH_2 \\ \hline \\ \hline \\ O \end{array} \qquad \qquad$	N-{β-[3,4-(Methylenedioxy)]phenylisopropyl}- 3,4-(methylenedioxy)benzylketiimine	163 100	204 65	135 42	105 19	77 18	133 12	164 12	20 1

Table 3. Impurities found in MDA synthesized with the nitropropene route

Forensic Science Review

.

Volume Four Number Two • December 1992

a The relative intensities of the ions listed for each compound are shown on the line below it.

142

	MW	Formula	Structure	Name	Mo	ost inte	ense E	lions	and rel	lative	ntensi	tya
1 152	152	C ₁₀ H ₁₆ O	CH3 CH3 CH3	1,7,7-Trimethylbicyclo(2,2,1)heptan-2-one, Camphor	95 100	81 71	41 65	108 50	152 45	55 43	109 38	61 37
2a	162	$C_{10}H_{10}O_2$	O CH2-CH=CH2	4-Allyl-1,2-(methylenedioxy)benzene, safrole	162 100	104 45	131 44	103 32	77 30	78 21	51 18	135 18
2ь			O CH=CH-CH3	1,2-(Methylenedioxy)-4-propenylbenzene, isosafrole								
3a	164	$C_{10}H_{12}O_2$	HO-CH2-CH=CH2	2-Methoxy-4-(2-propenyl)phenol, eugenol	164 100	77 44	55 42	103 38	149 35	91 33	39 30	131 30
3b			HO- H ₃ CO	2-Methoxy-4-propenylphenol, isoeugenol								
1a	178	$C_{11}H_{14}O_2$	H ₃ CO CH ₂ -CH=CH ₂	4-Allyl-1,2-(dimethoxy)benzene	178 100	91 49	107 49	103 43	147 38	163 36	39 27	77 20
4b			H ₃ CO CH=CHCH ₃	1,2-(Dimethoxy)-4-propenylbenzene	178 100	107 76	163 53	91 48	103 36	77 24	79 23	42
5	180	$C_{10}H_{12}O_3$	CH ₂ CH(OH)CH ₃	1-(3,4-Methylenedioxy)phenylpropanol-2	135 100	136 66	77 27	51 20	106 16	180 15	79 13	43 12
6a	193	$C_{11}H_{15}NO_2$	O-CH2CHCH3	N-Methyl-[1,2-(methylenedioxy)-4-(2-aminopropyl)]benzene, 3,4-(methylenedioxy)methylamphetamine, MDMA, Ecstasy	58 100	136 17	135 15	59 15	77 14	51 9	89 6	193
6b			$O_{C_3H_6-NH-CH_3}$	N-Methyl-[1,2-(methylenedioxy)-4-(3-aminopropyl)]benzene	44 100	162 17	65 11	77 11	135 10	51 10	193 9	130
7	194	$C_{11}H_{14}O_3$	Q CH ₂ CH ₂ CHCH ₃	1-(3,4-Methylenedioxy)phenyl-2-methoxypropane	59 100	194 27	135 27	136 17	77 13	51 10	103 5	105
8	195	$C_{11}H_{17}NO_2$	HO- HO- H ₃ CO	N-Methyl-1-[1-(hydroxy)-2-(methoxy)]-4-(2-aminopropyl)]benzene	58 100	51 6	77 5	137 5	94 4	59 4	122 3	165
9	208	$C_{12}H_{16}O_3$	H ₃ CO - CH ₂ -CH=CH ₂ H ₃ CO OCH ₁	4-Allyltrimethoxybenzene	208 100	193 59	161 24	133 20	105 21	91 15	77 13	7 1

Verweij • Impurities in Illicit Drug Preparations: MDA and MDMA

а 12 143

	MW	Formula	Structure	Name	Most intense EI ions and relative intensity ^a								
	209	C ₁₂ H ₁₉ NO ₂	H ₃ CO - CH ₂ CHCH ₃ H ₃ CO - CH ₂ CHCH ₃	N-Methyl-1-[1,2-(dimethoxy)-4-(2-aminopropyl)]benzene	58 100	152 11	51 6	151 5	59 5	107 4	65 4	91 3	
11a	242	$C_{10}H_{11}BrO_2$	O C2H4CH2Br	1-[3,4-(Methylenedioxy)]-4-(2-bromopropyl)]benzene	135 100	77 18	242 16	244 16	51 15	163 14	105 12	79 9	
16			Q CH2CHB1CH3	1-[3,4-(Methylenedioxy)]-4-(3-bromopropyl)]benzene	149 100	119 20	91 19	163 14	242 14	244 13	39 9	135 8	
12	244	C ₁₀ H ₁₃ BrO ₂	HO-CH2CHBrCH3	2-Methoxy-4-(2-bromopropyl)phenol	137 100	244 19	246 19	165 14	135 9	122 8	105 8	77 6	
l3a	258	$C_{11}H_{15}BrO_2$	H ₃ CO - CH ₂ CHB ₃ CH ₃	1,2-Dimethoxy-4-(2-bromopropyl)benzene	151 100	179 11	107 8	258 8	260 8	91 7	77 6	65 4	
3b	258	$C_{11}H_{15}BrO_2$	H ₃ CO C ₂ H ₄ CH ₂ Br	1,2-Dimethoxy-4-(3-bromopropyl)benzene	165 100	162 41	258 36	260 36	119 28	105 28	204 18	91 15	
14	288	C ₁₂ H ₁₇ BrO ₃	H ₃ CO - CH ₂ -CHBrCH ₃ H ₃ CO OCH ₁	Trimethoxy-4-(2-bromopropyl)benzene	181 100	209 18	288 15	290 15	148 7	151 6	105 5	77 5	

a The relative intensities of the ions listed for each compound are shown on the line below it.

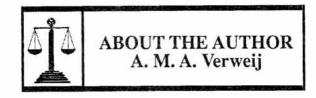
Forensic Science Review • Volume Four Number Two • December 1992

144

ing the illicit drugs. The structural information and eightpeak MS data of the impurities that are reported for this route of synthesis are summarized in Table 4. The impurities given here refer to various compounds present in safrole; the brominated products of these substances resulting from the reaction of different compounds in safrole with hydrobromic acid; and the amino compounds originating from the amination of the bromine-containing substances.

III. APPLICATIONS

The information collected in the tables was used in the author's laboratory [4] to differentiate between the various routes of synthesis followed for the production of MDMA samples. During the past year, very limited use of the data from the tables was made in cases in which the origin of different samples was questioned. These socalled "signature investigations" which utilize gas chromatographic profiles are now in a mature state of development. They are often used in cases in which amphetamine was involved. In particular, Strömberg's group at Linköping University has reported signatures of amphetamines of different origins for many years [9-12]. The literature [13-15] provides more of an overview of the subject. It stands to reason that the information from the tables can be used for similar purposes, depending on the popularity and future availability of these kinds of drugs.


IV. CONCLUSION

Mass spectral information in the tables is given about the different impurities found in either MDA or MDMA preparations that are produced along several routes. In most cases the nature of the impurities can be ascribed to starting chemicals, intermediates, and substances originating from condensations of reaction products in the various stages of the reaction. Some impurities are route specific, e.g., *N*-formyl MDA, 1-[3,4-(methylenedioxy)phenyl]-2-nitro-1-propene, and the bromo compounds of the bromopropane route. Although there are other possible synthetic routes, only those the impurities of which are described in the literature, are reviewed in this article. In our opinion, proper use of information in the tables can assist in elucidating the nature of a reaction route that may be used for producing an MDA analog preparation.

REFERENCES

- Dal Cason TA: An evaluation of the potential for clandestine manufacture of 3,4-methylenedioxyamphetamine (MDA) analogs and homologs; J Forensic Sci 35:675; 1990.
- Verweij AMA: Impurities in illicit drug preparations: amphetamine and methamphetamine; *Forensic Sci Rev* 1:1; 1989.
- Verweij AMA: Clandestine manufacture of 3,4-methylenedioxymethylamphetamine (MDMA) by low pressure reductive amination. A mass spectrometric study of some reaction mixtures; *Forensic Sci Int* 45:91; 1990.
- Verweij AMA: Basische Verunreinigungen in auf dem Drogenmarkt käuflichen 3,4-(Methylendioxy)methylamphetamin; Arch Kriminol 188:154; 1991.
- Lukaszewski T: Spectroscopic and chromatographic identification of precursors, intermediates, and impurities of 3,4-methylenedioxyamphetamine synthesis; J Assoc Off Anal Chem 61:951;1978.
- Verweij AMA: Verunreinigungen die bei der Herstellung von 3,4-Methylendioxyamphetamin (MDA) durch Kondensation zwischen Nitroethan und Piperonal aufgefunden waren; Arch Kriminol 190:24; 1992.
- Noggle FT Jr, Clark RC, DeRuiter J: Gas chromatographic and mass spectrometric analysis of samples from a clandestine laboratory involved in the synthesis of ecstacy from sassafras oil; J Chromatogr Sci 29:168; 1991.
- Noggle FT Jr, Clark RC, DeRuiter J: Gas chromatographic and mass spectrometric analysis of N methyl-1-aryl-2propanamines synthesized from the substituted allylbenzenes present in sassafras oil; J Chromatogr Sci 29:267; 1991.
- Alm S, Granstam I, Jonston S, Strömberg L: Classification of Illegal Leuckart Amphetamine by Gas Chromatographic Profiling, Rep. 25, Center of Forensic Science, Linköping University: Linköping, Sweden; 1992.
- Kronstrand R: The Conditions of the First Step of the Leuckart Synthesis of Amphetamine and Their Influence on the Impurity Profile, Rep. 22, Center of Forensic Science, Linköping University: Linköping, Sweden; 1990.
- Strömberg L, Maehly AC: Advances in Chemical Signature Analysis of Drugs, Center of Forensic Science, Linköping University: Linköping, Sweden; 1979.
- Strömberg L: Comparative gas chromatographic analysis of narcotics. Part II. Amphetamine sulphate; *J Chromatogr* 106:335; 1975.
- Sanger DG, Humphreys IJ, Patel AC, Japp M, Osborne RGL: The significance of gas chromatographic impurity patterns obtained from illicitly produced amphetamine; *Forensic Sci Int* 28:7; 1985.
- Lambrechts M, Rasmussem KE: Use of bonded phase silica sorbents for rapid sampling of impurities in illicit amphetamine for high performance chromatographic analysis; J Chromatogr 331:339; 1985.
- Lambrechts M, Tonnesen F, Ramussen KE: Profiling of impurities in illicit amphetamine samples by high performance liquid chromatography using column switching; J Chromatogr 369:365; 1986.

Verweij · Impurities in Illicit Drug Preparations: MDA and MDMA

Dr. Anthonie M. A. Verweij is senior chemist in the mass spectrometric service group of the Department of General Chemistry at the Forensic Science Laboratory of the Ministry of Justice at Rijswijk. He studied chemistry at the Free University of Amsterdam, where he received his Ph.D. in organic chemistry in 1970. His current research interests center on studies of the synthesis of illicitly prepared drugs, structural elucidation of impurities found in them, and the application of liquid chromatography/mass spectrometry in forensic science.