
LETTER 775

Synthesis of Lysergic Acid Methyl Ester via the Double Cyclization Strategy
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Abstract: An asymmetric synthesis of (+)-lysergic acid methyl
ester was accomplished through construction of the tetracyclic
ergoline skeleton by double cyclization consisting of intramolecular
aromatic amination and Heck reaction.
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Ergot alkaloids are a pharmacologically highly important
class of natural products, since they possess a wide spec-
trum of biological activities.1 Currently, a variety of syn-
thetic analogues have been clinically used as a
vasodilator, a prolactin inhibitor, an anti-Parkinsonian,
and other therapeutics to mention a few. These com-
pounds have been attractive targets for synthetic chemists
because of the unique tetracyclic ergoline skeleton con-
taining a tetrahydropyridine and a [cd]-fused indole.2

Among ergot alkaloids, lysergic acid (1) is pivotal for the
synthesis of variety of its congeners, and numerous syn-
thetic approaches have been reported to date (Figure 1).3

After the first total synthesis of racemic 1 by Woodward
and Kornfeld,4a nine total syntheses have so for been
achieved4b–4k including the one in optically active form by
Szántay using optical resolution of a racemic intermedi-
ate.4k A crucial issue to be addressed in an optically active
synthesis of 1 should be stereoselective construction of
the tetrahydropyridine moiety and incorporation to the er-
goline skeleton while preserving the C5 stereochemistry.
Herein, we report a synthesis of lysergic acid methyl ester
featuring a double-cyclization strategy.

Figure 1

Our synthetic plan is illustrated in Scheme 1. We planned
to construct the tetracyclic ergoline framework by utiliz-

ing the palladium(0)-mediated double-cyclization strate-
gy consisting of intramolecular aromatic amination5 and
Heck reaction of dibromobenzene derivative 3 in one pot.6

To secure the requisite regioselective b-elimination in the
Heck reaction, it is necessary to set up trans relationship
of the two substituents of the tetrahydropyridine moiety.
The double-cyclization precursor 3 would be synthesized
through a conjugate addition of (2,6-dibromophenyl)lith-
ium species 4 to a fully functionalized optically active
nitroolefin 5. Lithium salt 4 could be generated by iodine-
selective lithiation of 1,3-dibromo-2-iodobenzene.7

Scheme 1 Retrosynthetic analysis

The synthesis of the optically active nitroolefin 6 com-
menced with desymmetrization of meso-1,3-diol 7
(Scheme 2). Lipase PS-mediated acetylation at –15 °C af-
forded the optically active monoacetate,8 which was im-
mediately converted into BocNs-imide 89 (95% ee) under
the Mitsunobu conditions10 to prevent racemization of the
diol monoacetate. After removal of the Boc group, ozo-
nolysis of the terminal olefin 9, followed by dehydration
of the resulting hemiaminal gave cyclic enamide 10. To
obtain an optically pure compound, acetate 10 was con-
verted into the corresponding p-nitrobenzoate 11, which
was recrystallized from methanol to give 11 in optically
pure form. Enamide 11 was then treated with NIS in meth-
anol and subsequent dehydroiodination with DBU gave
12. The next task was a stereoselective construction of the
nitroolefin side chain. To this end, we investigated a dia-
stereoselective allylation and a subsequent transformation
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to the nitroolefin. After extensive screening, we have es-
tablished the allylation conditions (allyltrimethylsilane,
SnCl4, toluene, –78 °C) providing the desired compound
13 in high trans-selectivity (dr = 13:1).11 Judicious choice
of the protective group on the alcohol was crucial to
achieve the highly diastereoselective allylation. We spec-
ulate that the high selectivity could be attributed to the re-
mote participation of the ester carbonyl group to form the
cyclic oxonium ion, which blocked the nucleophilic attack
from the b-face.12 After manipulation of the protecting
groups, the terminal olefin 14 was cleaved in two steps
followed by condensation of the resultant aldehyde with
nitromethane to afford nitroolefin 6.

With the requisite nitroolefin 6 in hand, we then examined
the crucial double cyclization for the construction of the
tetracyclic ergoline framework (Scheme 3). (2,6-Dibro-
mophenyl)lithium (4), generated by treatment of 1,3-di-

bromo-2-iodobenzene (15) with n-BuLi in toluene,7 was
added to the nitroolefin 6 to give conjugate addition prod-
uct 16 as a mixture of diastereomers (the ratio was not de-
termined). After chemoselective reduction of the nitro
group, the resulting primary amine was protected with a
Boc group to give the double cyclization precursor 17.
Upon heating at reflux with catalytic Pd(OAc)2 and Ph3P
in propionitrile, 17 underwent the intramoleclar aromatic

Scheme 2 Synthesis of the nitroolefin 6
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amination and Heck reaction quite smoothly to furnish the
desired tetracyclic ergoline skeleton 18 in good yield.13

Having successfully constructed the tetracyclic ergoline
skeleton, we then executed the functional group manipu-
lations. After deprotection of the TBDPS group in 18,
stepwise oxidation of the resulting alcohol to carboxylic
acid followed by treatment with diazomethane gave meth-
yl ester 19. Indoline moiety was then converted into in-
dole by removal of the Boc group and the subsequent
oxidation with benzeneselenic anhydride in the presence
of indole.14 For smooth migration of the C8–C9 double
bond to C9–C10 position, deprotection of the methyl car-
bamate and protection of the two nitrogen atoms with Boc
groups were necessary at this stage. The double bond
migration4d,15 of the di-Boc compound 21 was effected by
treatment with DBU to afford 22 as a mixture of diastereo-
mers.4f Finally, stepwise deprotection of the both Boc
groups and reductive methylation of the dehydropiperi-
dine furnished lysergic acid methyl ester (23) as a mixture
of diastereomers, whose spectroscopic data were identical
to those reported in the literature.4k Since a mixture of 23
and 8-epi-23 has been converted into (+)-lysergic acid (1)
with epimerization of 8-epi-23,4k a formal total synthesis
of (+)-lysergic acid was achieved.

In conclusion, we have achieved an asymmetric synthesis
of (+)-lysergic acid methyl ester featuring highly diastereo-
seleticive allylation reaction and the efficient palladium-
mediated double-cyclization strategy.
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