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Abstract

3,4-Methylenedioxymethamphetamine (MDMA) is a relatively novel drug of abuse and as such little is currently known of its behavioural

pharmacology. This review aims to examine whether MDMA represents a novel class of abused drug. MDMA is known as a selective

serotonergic neurotoxin in a variety of animal species but acutely it is a potent releaser and/or reuptake inhibitor of presynaptic serotonin,

dopamine, noradrenaline, and acetylcholine. Interaction of these effects contributes to its behavioural pharmacology, in particular its effects

on body temperature. Drug discrimination studies indicate that MDMA and related drugs produce unique interoceptive effects which have led

to their classification as entactogens. This is supported by results from other behavioural paradigms although there is evidence for dose

dependency of MDMA-specific effects. MDMA also produces conditioned place preference but is not a potent reinforcer in self-

administration studies. These unique behavioural effects probably underlie its current popularity. MDMA is found in the street drug ecstasy

but it may not be appropriate to equate the two as other drugs are routinely found in ecstasy tablets

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

3,4-Methylenedioxymethamphetamine (MDMA) is cur-

rently one of the most popular drugs of abuse in Europe. Its

increasing popularity over the last 15 years has led to

concerns over possible short- and long-term adverse effects
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on users. Reports of short-term adverse reactions emerged

shortly after the introduction of MDMA into the pharma-

copoeia of controlled drugs. Despite widespread use,

however, these adverse reactions remain rare and the

death rate from MDMA intoxication is no higher than that

from comparable drugs of abuse and lower than that of

alcohol [55]. Of more concern from the Public Health

perspective is the possible neurotoxic effects of MDMA.

Like other amphetamines, MDMA has been shown to

produce neurotoxic damage in a variety of animal species

using high dose regimens (reviewed in Refs. [69,123,138,

223,250]). Whether this neurotoxic damage occurs in

human users of MDMA is uncertain as studies investigating

this phenomena suffer from a host of methodological

confounds [55,127,139,159,166,192,207,245]. What is cer-

tain from the literature is that human users of MDMA are

ingesting sufficient quantities to produce behavioural

effects. This review will examine the pre-clinical beha-

vioural pharmacology of MDMA, with a focus upon rodent

data, in order to determine if MDMA represents a novel

class of abused drug. The relevance of such studies to

human use of MDMA will then be discussed.

2. Pre-clinical pharmacokinetics and metabolism

Pharmacokinetic data after systemic injection of MDMA

has been described in Sprague Dawley rats [92,49]. Forty-

five minutes after a single injection of 20 mg/kg

[3H]MDMA, comparable concentrations of drug were

detected in various brain regions, whilst higher levels

were measured in the liver [23]. Distribution half-life varied

between animals from 2 to 26 min whilst, assuming a first-

order process, terminal plasma half-life was approximately

2.5 h for R(2 )MDMA and 2.2 h for S(þ )MDMA. Half-life

in the brain was approximately 1.5 h [79]. Following a

racemic dose of (^ )MDMA, the area under the curve for

R(2 )MDMA was greater than that of S(þ )MDMA [49,92].

Approximately 8% of the MDMA dose is excreted

unchanged in rats but this rises to 50% in humans [49,72].

The main metabolic products are 3,4-methylenedioxyam-

phetamine (MDA) and 3,4-dihydroxymethamphetamine

(DHMA) [49,72]. These undergo further metabolism

(possibly via catechol-O-methyl transferase mediated reac-

tions) to form 4-hydroxy-3-methoxymethamphetamine

(HMMA) and 4-hydroxy-3-methoxyamphetamine (HMA),

respectively. Oxidation of the methylenedioxy group takes

place via enzymatic hydroxylation, or non-enzymatic

processes involving hydroxyl radicals [144,167,178,180,

296]. In rats, the AUC for S(þ )MDA is approximately 2.5

times greater than for the R(2 ) isomer, indicating the

presence of long lasting (active) metabolites [92]. Stereo-

selective formation of S(þ )MDA may account for the more

rapid clearance of S(þ )MDMA. Irreversible oxidation of

MDMA also produces methamphetamine-quinone, which is

further (reversibly) oxidised to 3,4-DHMA [150]. Metabolic

species are excreted after appropriate glucorinide and

sulphate conjugation, which may produce neurotoxicants

[12,203]. The increased formation of metabolites in rats

may indicate a greater susceptibility to neurotoxicity

compared to humans.

MDMA is demethylenated to catechol metabolites in the

brain and liver by, amongst other enzymes, the cytochrome

P450 isoenzyme debrisoquine 4-hydroxylase (CYP 2D6)

[144,168,181,296]. Approximately 5–9% of Caucasians

show an absence of this isoenzyme as a result of autosomal

recessive inheritance of gene mutations and are classed as

‘poor debrisoquine metabolisers’ [117]. Female Dark

Agouti rats have been proposed as a model of the human

‘poor debrisoquine metaboliser’ polymorphism [33]. These

rats show a greater hyperthermic response to 10 mg/kg

MDMA i.p. at room temperature than males (‘extensive

debrisoquine metabolisers’ corresponding to the majority of

the Caucasian population), in the absence of significant

differences in plasma MDMA concentration [53]. Some

authors have speculated that severe toxic reactions seen

after single doses of ecstasy (e.g. [143]) may be idiosyn-

cratic and related to the metabolic status of the user [53,57,

163,296]. Concomitant use of CPY2D6 inhibiting drugs

(e.g. fluoxetine) with MDMA may increase the toxic risks to

all MDMA users [136,142].

3. Pre-clinical pharmacology

In vivo and in vitro studies suggest that MDMA is a

potent releaser and/or reuptake inhibitor of presynaptic 5-

HT, DA, noradrenaline (NA) and acetylcholine (ACh)

(Fig. 1; [2,44,63,89,121,129,151,194,213,219,286,302,304,

309,310]. Interaction of these systems underlies the unique

behavioural effects of MDMA (see sections below).

MDMA has a high affinity for the serotonin transporter

(SERT) ðKi ¼ 610 nMÞ and in accordance with the

‘exchange-diffusion’ model [90] may facilitate fluoxetine-

sensitive 5-HT release by stimulating both Ca2þ-dependent

and -independent 5-HT/MDMA exchange (i.e. dependent

and independent of neuronal firing) through reversal of

vesicular and plasma membrane transporters [63,140,151,

258,260,268,304]. MDMA thus behaves as a SERT

substrate, promoting carrier-mediated neurotransmitter

release [17,176]. However, recent fast cyclic voltammetry

data suggests that in some brain regions, inhibition of 5-HT

uptake (EC50 ¼ 0:35 mM [63]) is a more important factor

than direct transmitter release in increasing extracellular 5-

HT concentration [150]. In all brain regions, inhibition of

MAOA and MAOB contributes to the rise in extracellular

monoamine concentrations [128,173].

MDMA inhibits the firing of both dorsal (DRN) and

median (MRN) raphé nuclei with equal potency by direct

(receptor interaction, see below) or indirect (5-HT release)

activation of somatodendritic 5-HT1A autoreceptors [22,68,

202,238,284]. MDMA is distinguished from the classic
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5-HT hallucinogens, which also share this electrophysio-

logical property, by additional inhibitory activity in regions

such as the medial prefrontal cortex [233,234]. This work

also suggests that in contrast to administration of neurotoxic

regimens [10], there is no difference in the sensitivity of

DRN and MRN terminal regions to the acute serotonergic

effects of MDMA.

5-HT synthesis rate is acutely increased one hour after

i.v. infusion, only to be halved 5 h post-administration

[221]. MDMA rapidly (,1 h) inactivates tryptophan

hydroxylase by sulphydryl oxidation and this may be one

of the earliest markers of more prolonged neurotoxic effects

[165,269,274,277,288].

Although MDMA has higher affinity for the SERT there

is a greater total efflux of DA than 5-HT at behaviourally

active doses [257,303]. This involves both carrier- and

impulse-mediated processes, and may also include the

reversal and reuptake inhibition of the DA transporter

(DAT) [63,160,199,258,310]. Extracellular DA levels are

enhanced and maintained by a rapid and reversible

inhibition of reuptake accompanied by an increase in DA

synthesis and decrease in turnover [63,150,172,199,214,

260,286,289]. DA release has been shown in the hippo-

campus, an area sparsely innervated by DA fibres [279]. It

has been proposed that this occurs through an increase in the

efflux of cytosolic DA from NA neurons via the NA

transporter (NAT) [279]. Microdialysis studies indicate that

blocking MDMA-induced 5-HT release by neurotoxic

lesion, or utilisation of pharmacological antagonists at

the SERT or 5-HT2A receptors, significantly decreases

Fig. 1. Schematic representation of the main pharmacological effects of MDMA as described in the text. Extracellular monoamine concentration is elevated by

increased intraneuronal synthesis, reuptake inhibition, monoamine oxidase inhibition and carrier-mediated exchange. Direct and indirect postsynaptic

histamine and 5-HT receptor activation mediates ACh and DA release. There is speculation that MDMA may enter the nerve terminal as part of a vesicle

exchange-diffusion process.
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subsequent DA release [129,160,276,309]. Increases in

MDMA-induced DA efflux occur in parallel with a decrease

in ventral substantia nigra GABA release [309]. Taken

alongside the observation that local infusion of 5-HT2A

receptor antagonists or the systemic administration of

GABAA receptor antagonists significantly attenuates the

rise in extracellular striatal DA [51,212] it has been

hypothesised that direct or indirect activation of 5-HT2A

receptors localised upon GABA interneurones, may disrupt

nigrostriatal GABA negative feedback control such that

there is a subsequent disinhibition of DA release [276]. DA

release may also be ‘state-dependent’, i.e. a phasic response

that is only of pharmacological significance during states of

high 5-HT and DA transmission [19,273]. For example,

endogenous 5-HT enhances the release of DA in the

striatum, only when nigro-striatal DA transmission is also

activated [182]. MDMA administration may facilitate these

state-dependent requirements through extensive 5-HT and

DA release. However, the exact mechanism underlying DA

release, particularly the role played by the DAT, has yet to

be clarified [258].

MDMA releases NA with greater potency than DA [257].

The drug has strong inhibitory effects on the firing rate of

NA neurons in the locus coeruleus which may be due to 5-

HT and/or NA mechanisms [91,171,257,288]. MDMA

potentiates NA-induced smooth muscle contraction, which

is blocked by the presence of cocaine but not isoprenaline

[7]. As isoprenaline is not a substrate for the NAT, reuptake

blockade rather than transmitter release may underlie

MDMA effects on NA neurons. NA release may be

responsible for many of the amphetamine-like psychosti-

mulant effects of MDMA.

MDMA elicits cortical and striatal ACh release at doses

that also stimulate spontaneous behaviour, and may be

controlled by histamine H1 receptor activation [2,89].

Similar cholinergic effects have been reported for cocaine

and amphetamine and whilst they may underlie some of the

psychomotor stimulant properties of MDMA, the import-

ance of this effect is unknown [71,149].

Extracellular brain concentrations of MDMA are

reported in the high micromolar range after systemic

administration to rats [313]. At these concentrations

MDMA has moderate affinity for a variety of central

receptor sites including 5-HT uptakes sites ðKi ¼ 610 nMÞ;

5-HT2A receptors ðKi ¼ 5:1 mMÞ; histamine H1 receptors

ðKi ¼ 5:7 mMÞ and muscarinic M1 ðKi ¼ 5:8 mMÞ and M2

ðKi ¼ 15:1 mMÞ receptors [22,294]. Whilst direct receptor

interactions undoubtedly contribute to the behavioural

pharmacology of MDMA, increases in extracellular trans-

mitter concentrations are probably more important.

Both rat and human studies have shown an acute increase

in concentrations of prolactin, arginine vasopressin and

peripheral markers of hypothalamic-pituitary-adrenal

(HPA) axis activation, namely corticosterone, cortisol,

and adrenal ascorbic acid [62,73,195,215,231]. Oxytocin

and vasopressin are dose-dependently released by

MDMA and its metabolites from rat hypothalamic prep-

arations, with HMMA being the most potent releaser [94].

Sex and metabolic status may therefore predict suscepti-

bility to the more serious side effects of hyponatraemia after

MDMA-ingestion [131,301]. Administration of MDMA

produced rapid and pronounced changes in immune

function [57–61,147,230]. This included a reduction in

the number of circulating lymphocytes, a suppression of

T-lymphocyte proliferation and immunoglobulin pro-

duction, changes in cytokine production and an impairment

of the ability to respond to an in vivo bacterial lipopoly-

saccharide challenge. In humans, there is a general trend

towards baseline immunological response 24 h post drug. It

is possible that prolonged administration of MDMA could

reduce host resistance to disease.

4. Pre-clinical toxicology

The acute LD50 of MDMA reported for Swiss-Webster

mice is 97 mg/kg i.p., and 49 mg/kg i.p. for the Sprague

Dawley rat [134]. Serum MDMA levels assayed in humans

have approached, or in some cases exceeded, the non-

human primate LD50 of 22 mg/kg i.p. [253]. MDMA is less

toxic in rats via the oral route, with an LD50 of 325 mg/kg

[113], although deaths have occurred in female Sprague

Dawley rats over a range of lower oral doses (40–320 mg/

kg), including .66% of animals dying within 4 h of

administration of .160 mg/kg MDMA at 20 8C [50]. Death

was thought to have resulted from a combination of

hyperthermia and the ‘serotonin syndrome’ (see below).

Toxicity also seems strain dependent, at least in female rats.

The female Dark Agouti rat died after 10 mg/kg i.p.

administered at ambient temperatures of 31 8C, but this

dose was not lethal to the female Sprague Dawley [188].

Some individuals may therefore be more sensitive to acute

MDMA toxicity at high ambient temperatures. Chronic

administration to beagle dogs ðn ¼ 24Þ using oral doses of

#15 mg/kg (once daily for 28 days) resulted in a single

death, and there was evidence of testicular atrophy and

prostatic enlargement in some animals [98]. Concurrent

studies in the rat (#15 mg/kg per day) were without notable

pathological consequence. However, more recent work

found that daily administration of MDMA to rats for 28 days

produced significant myocardial pathology, which

resembled the necrotic and inflammatory responses

observed in some human fatalities [204,222,298]. Like

other substituted amphetamines, aggregation toxicity is

observed with MDMA [70]. Housing mice in groups of at

least five produced a 5-fold decrease in the i.p. LD50

compared with individually housed animals.

Pre-natal methamphetamine and d-amphetamine

exposure in mice and rabbits is associated with dose-

dependent increases in physiological abnormalities in

offspring [239]. Pre-natal studies have shown that MDMA

releases [3H]5-HT from cortical synaptosomes harvested
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from rat embryos as early as 17 days old [162]. This is

notable as some actions of 5-HT are considered teratogenic,

partly through modulation of uterine blood flow [78,164,

205]. However, rodent teratological studies have found no

abnormalities in gestational duration, neonatal birth weights

or physical appearance after MDMA [285], and only a

modest reduction in litter size (which the authors admit may

have been a chance finding considering a higher than

average litter size in control animals) [52]. Other workers

investigating the neurotoxic effects of pre-natal MDMA

administration have not reported physical abnormalities [5,

36,37]. In contrast, a single 8 mg/kg MDMA injection into

14 day old chick embryos and 1 day old chicks results in

decreased body and brain weight, and decreased

motility [38].

5. Cardiovascular effects

Acute MDMA administration produces cardiac stimu-

lation and tachycardia, and facilitates vasoconstriction in

rats and rabbits [91,236]. Such vascular changes, together

with cerebral hyperperfusion, forced cerebrovascular

dilation and coagulapothy may be responsible for cases of

intracerebral haemorrhage in some human users [91,104,

135]. In common with cocaine and other amphetamine

analogues, clinical reports indicate MDMA use is associated

with cardiovascular toxicity, most likely through acute

sympathomimetic activation [7,91,100,175]. Cardiovascu-

lar changes are compounded by acute MDMA-induced

renin release, leading to an increase in angiotensin II (AII)

production [39]. AII is the effector peptide of the renin–

angiotensin system, which in addition to its vasoconstrictive

effects promotes aldosterone release from the adrenal

cortex, leading to an increase in blood pressure. Neurotoxic

effects of some MDMA regimens [251] may also alter

cardiovascular or cardiovascular reflex function through

actions on descending central or peripheral 5-HT systems

[222]. The drug also has agonist activity at central a2A/D

adrenoceptors (see below; [171]) and produces short-lived,

pressor responses at low to medium doses (1–5 mg/kg)

followed by a more prolonged depressor response [297]. Of

the limited number of studies performed in humans

investigating cardiovascular activity after MDMA, only

Downing has reported similar observations [77], although

this may be explained by the relatively short time frame of

investigation of other work.

6. Hyperthermia and thermoregulation

At room temperatures MDMA produces an abrupt rise in

body temperature (<1.5 8C) that is sensitised to chronic

administration [48,66,67,120,215,271]. Oral administration

produces a more prolonged elevation in core temperature

than the i.p. route [195], although in human volunteer

studies oral MDMA does not reliably increase body

temperature, and any observed increases do not exceed

0.5 8C. In the rat, core temperature changes induced by the

administration of MDMA are dependent upon environmen-

tal variables, such as cage type, housing conditions, water

availability, and ambient temperature [65,66,119,184]. High

doses of MDMA administered at high ambient temperatures

produce hyperthermia, low doses at low ambient tempera-

tures produce hypothermia, and intermediate doses produce

a biphasic response, initially hypothermia followed by

hyperthermia [67]. Different types of cages have also been

shown to affect the hyperthermic properties of MDMA, with

acrylic cages producing an increase of over 2 8C and metal

cages producing no hyperthermia [185]. In the rat,

hyperthermia is accentuated by an increase in metabolic

rate and reduced blood flow to the tail [120]. Despite

inducing a rise in rectal temperature, there was no

corresponding increase in the tail, indicating that MDMA

may inhibit heat dissipation in the rat [196]. Cutaneous

vasoconstriction coincides with acute hyperthermia indicat-

ing impaired heat loss in MDMA treated animals [91,236].

Until recently, 5-HT release and activation of post-

synaptic 5-HT2A/2C receptors were thought to be essential

prerequisites for MDMA-induced temperature change

[123,225,270]. Work in the Dark Agouti rat has indicated

that it is more likely that the D1 receptor mediates

hyperthermia [196]. Furthermore, increasing the avail-

ability of DA by administration of high doses (.25 mg/kg

i.p.) of the DA precursor l-dihydroxyphenylalanine (L-

DOPA) 2 h after MDMA administration (15 mg/kg i.p.) led

to a severe, prolonged, and often fatal hyperthermia in

male Dark Agouti rats [51]. Hyperthermia may also

potentiate MDMA-induced depletion of glutathione,

increasing the risk of hepatocytic exposure to pro-oxidant

toxicants [47,281].

7. Locomotor response

Peripheral and central administration of MDMA dose-

dependently enhanced locomotor activity in the open field

test [27,41,44,65,116,247,262,283]. In contrast to

undrugged animals, those receiving MDMA initially

exhibited immobilisation, which may be related to the

anxiogenic properties of the drug (see below) [114]. Whilst

administration of doses of cocaine and amphetamine that

produced a similar amount of activity increased locomotion

throughout the test chamber, MDMA characteristically

resulted in focused ‘straight-line patterns’ in which move-

ment of the animal was confined to the periphery [43,115,

247,262]. This has been described as ‘rotation within the

chamber’ [24] but may more accurately represent a

thigmotactic response [115], a property shared with the

classic 5-HT hallucinogens. Familiarity with the testing

environment failed to change the pattern of activity,

indicating that ‘centre-avoidance’ was not due to
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the aversive properties of the open spaces of the arena [43].

Higher doses evoked repetitive stereotypical movements,

although the majority of behaviours showed greater

resemblance to elements of the serotonin syndrome [169,

283]. In keeping with its effects on 5-HT release,

S(þ )MDMA was more potent in eliciting stereotypy/

serotonin syndrome behaviour [145]. Repeated adminis-

tration of low to medium doses (2.5–7.5 mg/kg i.p. every

other day for 6 and 12 days) produced locomotor

sensitisation [283]. Pairing MDMA with a distinct odour

produced enhanced locomotion upon presentation of the

odour alone, indicating that like other psychostimulants, it

can produce conditioned activity [116]. Interestingly, and of

great relevance for the development of new anti-parkinso-

nian drugs, MDMA dose-dependently reversed haloperidol-

induced catalepsy in rats. There was a supraadditive effect

of administration of the individual enantiomers, indicating

that multiple sites of action were involved [278].

Neuropharmacological analysis has indicated an import-

ant role for DA in the mediation of the locomotor effects of

MDMA, as might be expected of an amphetamine-like drug

[19,41,42,114,310] (comprehensively reviewed in Ref.

[20]). However, 6-hydroxydopamine (6-OHDA) lesions of

the mesolimbic DA system only partially attenuated

MDMA-induced locomotion [114]. As 5-HT release alone

is insufficient to increase locomotor activity [9], an

interaction between DA and 5-HT may underlie the

qualitative differences between amphetamine- and

MDMA-induced locomotion [19]. 5-HT1B receptor agonists

elicit locomotor hyperactivity similar to MDMA [247] and

transgenic mice lacking the SERT or 5-HT1B receptor show

no or reduced MDMA-induced locomotion and a beha-

vioural pattern qualitatively reminiscent of other amphet-

amines [262,27]. Prior 5-HT depletion or pre-treatment of

animals with SSRIs or 5-HT1B receptor antagonists block

low dose MDMA hyperkinesis [42,44]. Activation of this

receptor subtype may be fundamental in defining MDMA-

specific locomotor activity. The 5-HT2A antagonist MDL

100,907 blocked high dose (20 mg/kg) but not low dose

(3 mg/kg) MDMA-induced locomotion [157].5-HT2C recep-

tor antagonists potentiated locomotor activation after low

dose MDMA [20,115]. It has been proposed that unmasking

of 5-HT1B receptor-mediated hyperactivity via 5-HT2C

antagonism is only possible in the presence of the elevated

DA and 5-HT concentrations seen after MDMA [19].

8. Anxiety, aggression and social behaviour

Medium to high doses of MDMA (8–20 mg/kg i.p.)

reduced aggressive behaviours (sideways threats and attack)

in social encounters between individually housed male mice

without affecting immobility [187,216]. However, these

were also accompanied by decreases in social investigation,

body care, and digging behaviours. Furthermore,

MDMA significantly increased avoidance and submissive

behaviours in a similar manner to the anxiogenic benzo-

diazepine receptor ligand, FG 7142, suggesting that mice

treated with MDMA exhibit anxiogenic-like behaviour in

agonistic encounters. In contrast, whilst 0.3–10 mg/kg

MDMA dose-dependently reduced the combined frequency

of attacks and sideways threats in the resident-intruder

model, there were no reported effects upon other character-

istic postures [201]. Aggressive behaviour was reduced in

pairs of Gymnotus carapo, considered the most aggressive

of all weakly electrical fish species [45]. In contrast with

effects reported in mice, acute injection (1 or 5 mg/kg

MDMA) to this species was associated with an increase in

non-aggressive social interaction. Responses to novel visual

stimuli were enhanced suggesting that diminished aggres-

sion was not due to general behavioural suppression. In

Charles Foster rats, 5 or 10 mg/kg MDMA reduced the total

time spent in social interaction [28], whilst 5 mg/kg

decreased aggressive behaviours and facilitated a longer

duration of social interaction in inbred Wistar rats [208].

The difference in behaviour produced at the overlapping

dose of these two studies (i.e. 5 mg/kg) may have been due

to strain variation and/or degree of familiarity towards the

testing environment [193].

In the rat elevated plus maze, 5–10 mg/kg i.p. produced

a dose-dependent increase in fear-like behaviour [28]. Total

arm entries, and open arm entries and time are decreased,

with a concomitant increase in closed arm preference. Over

a range of lower doses (,5 mg/kg), and in contrast to the

effects on social interaction, MDMA also increased anxiety-

like behaviour on the plus maze [208]. This dose range

decreased open arm time and increased closed arm time. In

contrast, there was no effect on the expression of a variety of

risk assessment behaviours (head dips, rears, and stretched

attend postures). Similar increases in anxiety were obtained

from the emergence and cat odour avoidance tests [208]. In

the emergence test, ,5 mg/kg decreased the frequency of

emergence and caused a concomitant increase in emergence

latency, whilst 5 mg/kg produced a significant decrease in

approach time towards a worn cat collar. There was a dose-

dependent reduction in the number of vocalisations

produced by footshock [208].

Dose-related effects have been reported on the murine

plus maze [179,217]. 4–8 mg/kg MDMA reduced% open

arm entries and increased closed arm entries, 12 mg/kg

produced no significant effects, whilst 15– 20 mg/kg

increased% open arm time without affecting other tra-

ditional indices of behaviour. An anxiogenic behavioural

profile, signified by a significant reduction in rearings and

transitions, is also reported in mice at medium to high doses

(8–15 mg/kg i.p.) in the light-dark box [186]. Repeated

testing on the plus maze revealed the anxiogenic effects of a

low dose of MDMA (1 mg/kg), which was not present

acutely [217]. In contrast, high dose anxiolysis is dimin-

ished after sub-chronic dosing. Binge users of ecstasy may

therefore experience an increase in unpleasant subjective

effects across time.
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In comparison with saline treated animals, which

actively explore new environments, MDMA initially

reduced locomotor activity when animals were introduced

into an open field arena [115]. Moreover, both wild type and

5-HT1B receptor knockout mice exhibited reduced rearings

and nose pokes (3.3–30 mg/kg i.p.) after introduction to a

modified open field arena [262], suggesting that reductions

in exploratory behaviour are preserved across different

behavioural models.

The pharmacological processes underlying the anxio-

genic and social effects of MDMA have not yet been

described. The dose dependent nature of effects suggests that

multiple mechanisms underlie the behavioural pharma-

cology. Acute 5-HT release may make the animal more

responsive to the aversive properties of the plus-maze

environment, although increasing 5-HT function in the

absence of threat does not cause fear-like behaviour in itself

[132]. Like fenfluramine, some reports suggest that treatment

with low doses of fluoxetine suppresses plus maze open arm

exploration in rats, which mirrors acute anxiogenic effects in

humans [133] (but see [125]). Both these drugs share the

pharmacological ability with MDMA to increase extracellu-

lar 5-HT concentration. 5-HT2A/2C receptor agonists such as

meta-chlorophenylpiperazine (mCPP) exert strong anxio-

genic effects in a variety of animal models of anxiety [102,

198]. MDMA shows micromolar affinity for the 5-HT2A

receptor, and 5-HT released by MDMA may interact with 5-

HT2A/2C receptor sites (see above). This property, perhaps in

combination with HPA axis and sympathomimetic acti-

vation, both potent anxiogenic stimuli, may underlie the

effects of MDMA in the plus maze [3,161,254]. However,

there have been no reports of increased social interaction

after acute treatment with either fenfluramine or fluoxetine

[85,124] and another SSRI, citalopram, has been shown to

reduce social behaviours in rats [75]. In contrast, pro-social

and anti-aggressive effects have been reported with the 5-

HT1A and 5-HT2B receptor agonist buspirone [237].

Interaction with these receptor subtypes at low doses may

underlie the unique social effects of MDMA. Finally, and

worthy of further investigation, are the possible links

between vasopressin and oxytocin release and pro-social

behaviours induced by MDMA at low doses (see Section 3;

,5 mg/kg). For example, administration of these neurohor-

mones ordinarily facilitates social approach and recognition,

whilst oxytocin and vasopressin receptor knockout mice

show unique social deficits (e.g. [311]) Furthermore, stress-

reduction in rats exposed to an oxytocin-injected cage-mate

[4] may underlie accounts of gregariousness reported by

drug-free humans at social events where MDMA is

consumed by others [141].

9. Reward and reinforcement

In the cocaine substitution paradigm, MDMA was self-

administered by rats, Rhesus macaques, and baboons and

appeared to be under 5-HT 2A control [26,82,170,244].

Compared to cocaine, MDMA was administered at a lower

response rate and served as a reinforcer in a smaller

percentage of animals. Cocaine substitution may reflect the

DA stimulus properties of MDMA (see Section 12), as 5-HT

hallucinogens are rarely self-administered [21,197]. How-

ever, i.v. MDMA has been self-administered by drug naı̈ve

rats [244]. Prior experience with MDMA produced

sensitisation to itself, although in contrast to other

behavioural and neurochemical responses [146,155,206],

did not produce cross-sensitisation to cocaine [244]. In

common with other drugs of abuse, MDMA dose depen-

dently lowered the threshold and increased the response rate

of medial forebrain bundle and nucleus accumbens self-

stimulation, and reduced the response rate in operant

schedules of reinforcement [148,180,246,256,293].

MDMA and its isomers readily establish conditioned

place preference (CPP) in rats and chickens [30,31,38,86,

191]. Failure, or difficulty in demonstrating CPP (e.g. [93])

appears related to the housing status of the test animals, in

common with the effects of many other abused drugs, a

more profound place preference is observed in socially

isolated animals compared with group housed rats [200].

Unsurprisingly, considering the well-documented role of

DA in reward circuitry [287], CGS 10746B, a DA uptake

inhibitor prevented the acquisition of MDMA CPP [31]. The

non-specific 5-HT receptor antagonists methysergide and

LY 53857 blocked the self-stimulation-response-rate

increasing effects of MDMA, but not the threshold lowering

effects [180]. This indicated that 5-HT plays less of a role in

the rewarding properties than the performance effect of

MDMA self-stimulation. However, MDL 72222, a 5-HT3

receptor antagonist completely blocked the acquisition of

MDMA CPP [32]. Consistent within their localisation

within limbic areas, 5-HT3 receptors modulate DA

transmission, but fail to attenuate amphetamine CPP [46].

Alternatively, there is good evidence to suggest transmitter

interactions between 5-HT and DA [116,229]. As 5-HT has

been shown to have an inhibitory effect upon self-

stimulation reward threshold, possibly through negative

modulation of DA activation, the reversal of 5-HT-induced

inhibition may be expected to increase DA activity. Finally,

naltrexone, a non-specific opioid receptor antagonist pre-

vented the acquisition of MDMA CPP [29]. In common

with its effects upon cocaine CPP and self-stimulation, the

opioid d receptor antagonist natrindole prevented the

increase in MDMA-induced self-stimulation response rate

[246]. These data suggest that MDMA has rewarding

properties but is only a weak reinforcer and is therefore

unlikely to be a drug of dependence.

10. Sensorimotor gating

Pre-pulse inhibition (PPI) is the unlearned suppression

of startle when the startling stimulus is preceded by
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a weaker pre-stimulus, and has been used as a laboratory

measure of sensorimotor gating [99]. Patients with

symptoms of schizophrenia fail to filter or gate most of

the sensory stimuli they receive, leading to sensory

overload and fragmented thinking. PPI is deficient in

symptomatic patients and can be modelled and reproduced

in rats treated with DA drugs such as d-amphetamine

[189]. MDMA (0.3–20 mg/kg) produced a reduction in

auditory and visual PPI in rats that was reversed by

fluoxetine pre-treatment or with the selective 5-HT2A

receptor antagonist MDL 100,907 [158,189,232,300]. This

effect may therefore be attributable to presynaptic 5-HT

release. The importance of 5-HT2A receptors in the

mechanism of action of many atypical antipsychotic

drugs is well recognised [275]. Use of MDMA within

PPI may serve as a useful animal model of psychosis.

However, despite PPI showing a high degree of cross

species homology, clinical administration of 1.7 mg/kg p.o.

MDMA produced opposite effects in MDMA-naı̈ve

humans, PPI was increased, although acoustic startle

habituation was consistent with rat studies [99,300]. This

is congruous with the fact that MDMA and related

entactogens are not considered psychotomimetics in

humans [122].

11. Operant behaviour

Acute MDMA decreases responding on multiple schedule

fixed ratio and conditional discrimination procedures, and

increases response rates and reduces reinforcement under

interresponse-time-greater-than-t schedules in rats, mice,

pigeons and non-human primates [173,209,210,256,259,

293]. This is comparable to the effects of both d-

amphetamine and MDA [101,174,240,292], although the

rate reducing effects of MDMA and MDA are antagonised by

different monoamine antagonists [209]. Response rates

under fixed ratio schedules of reinforcement are increased

at low doses and decreased at high doses compared to control

animals [201,210,177]. Like other behavioural effects,

tolerance quickly develops to chronic dosing (.5 days) but

intermittent or once weekly administration of low to medium

doses results in sensitisation to the acute effects [177,210].

In an operant test battery which assessed complex brain

function, non-human primates were more sensitive to

disruptions in functions of time estimation, motivation and

learning than short-term memory, colour- and position-

discrimination [96]. Residual behavioural tolerance devel-

oped after chronic MDMA (1–20 mg/kg i.m. twice daily

for 14 days in ascending order for several months in

repeated cycles) but operant responding returned to pre-

drug values a few weeks after chronic treatment had

ended, indicating that cognitive disruptions are not long-

lasting [95,97].

12. Drug discrimination

Parameters underlying stimulus control have been

explored in rats trained to discriminate (^ )MDMA from

saline. (^ )MDMA discrimination peaks at 20–60 min post

injection (mirroring onset time in human volunteers) and

stimulus generalisation occurs with both isomers, the S(þ )

isomer being more potent than R(2 )MDMA but shorter

acting [15,16,263]. Cross substitution occurs between the

individual stereoisomers, but this seems dependent upon the

training schedule and drugs doses used [13,16]. For

example, increasing the training dose of MDMA allows

for greater cross-generalisation between isomers [16].

Fenfluramine almost produces complete substitution in

(^ )MDMA trained rats [118] as would be expected of a

5-HT releaser, but d-amphetamine and cocaine do not [13,

110,228]. Blockade of MDMA stimulus control by pre-

treatment with the 5-HT depletor para-chlorophenylalanine

[265], a neurotoxic regimen of fenfluramine (4 mg/kg every

12 h for 96 h) [14], or fluoxetine [220] indicates that these

behaviours are mediated by serotonin release rather than

direct postsynaptic receptor actions. Interestingly, systemic

administration of several putative metabolites of MDMA

failed to produce stimulus generalisation [109]. The polar

nature of many of these agents may have precluded blood

brain barrier (BBB) penetration, although non-hydroxylated

derivatives (lipophillic agents, able to cross the BBB) were

also without MDMA-like activity. However, no systematic

work has yet been done examining stimulus effects after

direct i.c.v. administration of MDMA metabolites. Con-

sidering the role of MDMA-metabolites in neurotoxicity

[12] it would be useful to further investigate the role of these

species in discriminative stimulus control.

Two-choice drug discrimination procedures have shown

that (^ )MDMA and its individual stereoisomers produce

similar discriminative stimulus effects to d-amphetamine in

pigeons and rhesus monkeys [80,156]. In rats, generalis-

ation of the d-amphetamine cue to (^ )MDMA was only

observed at doses that severely disrupted response rates [16,

227] and using a three-lever choice paradigm Baker and

Taylor [15] failed to show full stereoselective MDMA

substitution for d-amphetamine. Some workers, using

standard two-lever operant procedures, have suggested

that at short test drug injection intervals (20 min) the d-

amphetamine cue will generalise to S(þ )MDMA but not

R(2 )MDMA [108]. This may be related to the former

enantiomer’s greater potency in facilitating [3H]DA release

[151,194]. However, this effect is lost at slightly longer

injection intervals (30 min) [16,227]. As there is little

difference in caudate and nucleus accumbens DA release

between these two time intervals in the awake rat [310] it is

likely that methodological variables such as the schedule of

reinforcement used may be a likely determinant of results.

Rats can be trained to discriminate (^ )MDMA from d-

amphetamine, indicating that the two drugs produce

dissociable interoceptive states [118]. This does not mean
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that their effects are mutually exclusive. In pigeons trained

to discriminate d-amphetamine and the 5-HT releaser

fenfluramine from saline, (^ )MDMA produced some

responding on both drug levers [81] suggesting that

(^ )MDMA possesses complex stimulus properties that

involve both 5-HT and DA mechanisms. Rats trained to

discriminate DA and 5-HT drugs such as norfenfluramine,

fenfluramine, 8-OH DPAT, tetrahydro-b-carboline or l-

cathinone from saline, consistently show drug-appropriate

responding when tested with (^ )MDMA [111,263].

Schechter [264,266] has hypothesised that the mixed DA-

5-HT effects may lie on a continuum with lower doses of

(^ )MDMA being more DA-like, higher doses possessing

substantial 5-HT activity and intermediate doses producing

both effects. D2 receptor antagonists have little effect upon

drug-appropriate responding in animals trained to discrimi-

nate (^ )MDMA at 20 min post-injection, but significantly

reduced drug-appropriate responding in animals trained at

the 105 min interval [264]. DA mediated cues therefore

become more conspicuous as the discrimination session

progresses. This may also explain why some authors have

had difficulty showing amphetamine-appropriate respond-

ing at short time intervals after injection but show partial

substitution when tested at longer intervals, which coincide

with peak DA release [16,310].

MDA will substitute for (^ )MDMA and vice versa [106,

34], but whereas both LSD and 1-(2,5-dimethoxy-4-

methylphenyl)-2-aminopropane (DOM) substituted for

MDA, attempts to identify a substantial 5-HT hallucino-

gen-like component to the (^ )MDMA cue have generally

failed [40,105,218]. However, a low dose of LSD (60 mg/

kg), completely [15], or partially [16], substituted for

R(2 )MDMA, and using a more complex operant pro-

cedure, whereby the differences between 5-HT and DA

stimulus components were made more salient, (^ )MDMA

substituted for LSD [8]. Mescaline produced full stimulus

generalisation to (^ )MDMA [35,40], although only

R(2 )MDMA shared similar discriminative stimulus effects

in mescaline-trained rats [15]. It is interesting to speculate

whether this is related to stereoselective affinity for 5HT2A

receptors, which also reflects hallucinogenic potency in man

[183,291]. R(2 )MDMA shows moderate micromolar

affinity for 5-HT2A receptors in the rat brain whilst Ki for

S(þ )MDMA was approximately 5 fold lower. Accordingly,

S(þ )MDMA may be more ‘amphetamine-like’ and

R(2 )MDMA more ‘hallucinogen like’. Synergistic inter-

action exists between (^ )MDMA and LSD. In rats trained

to discriminate 1.5 mg/kg (^ ) MDMA from saline, co-

administration of sub-threshold doses of (^ )MDMA and

LSD produced a maximal (^ )MDMA-like response [267].

Glennon and colleagues [107,112] have summarised

much of the existing work on the discriminative stimulus

properties of MDMA and conclude that it lies in the

intersect between d-amphetamine and N-methyl-1-(4-meth-

oxyphenyl)-2-aminopropane (PMMA; a compound produ-

cing dissociable behavioural effects from DOM and

amphetamine). However, whilst there is full stimulus

generalisation of MDMA with PMMA (indeed as with all

entactogens, see below), as has been discussed earlier in this

section, generalisation to the amphetamine cue is dependent

upon factors such as racemic form, training schedule, dose,

and time interval. Furthermore, it is possible to show

hallucinogen-like properties at low doses, so interoceptive

stimuli produced by MDMA may be more complex than

imagined.

Great similarities between the discriminative stimulus

properties ofMDMA andother structurally related drugs have

been described, most notably N-methyl-1-(1,3-benzodioxol-

5-yl)-2-butanamine (MBDB), 5,6-methylene-dioxy-2-ami-

noindan (MDAI), and 3,4-methylenedioxyethamphetamine

(MDEA) [34,110,190,228]. These drugs produce few inter-

oceptive cues similar to LSD, DOM or d-amphetamine

which suggests that they all possess homogenous com-

ponents that are qualitatively different to both stimulant and

hallucinogenic drugs. This has led to their classification as

entactogens [1,218].

13. Miscellaneous behavioural effects

MDMA acutely reduced food intake at medium to high

doses but chronic administration did not result in prolonged

hypophagia [74,98,248]. Neurotoxicology studies have

reported transitory weight loss but the rate of subsequent

weight gain generally does not differ from controls [38,282,

305]. 1–2.5 mg/kg of MDMA elicited amphetamine-like

rotation in a round chamber [167]. MDMA showed cross-

tolerance with the behavioural effects of methamphetamine

but not MDA in a milk drinking task [312]. This is

surprising considering that MDA is an active metabolite of

MDMA and that it generalises to MDMA in drug

discrimination studies [35,92]. However, whilst both are

equipotent 5-HT, DA and NA releasers, MDA but not

MDMA substitutes for classic hallucinogens and DOM

substitutes for MDA but not MDMA [105,106,218,286].

Both MDA and MDMA enhance conditioned and uncondi-

tioned responding, an effect not shared by classical

hallucinogens [255].

MDMA dose-dependently (0.2–20 mg/kg s.c.) reduced

fluid intake, including sweetened ethanol in fluid deprived

rats [30]. MDMA did not produce dipsogenic effects,

despite increasing plasma renin and aldosterone, and may

actually inhibit thirst in rats [18,39]. In humans, potentially

harmful polydipsia may be caused by a direct result of

exhaustion and dehydration through energetic dancing

rather than through indirect endocrine effects [87,131].

Acute or subchronic administration of 5 mg/kg MDMA

attenuated ethanol (10% w/v) consumption in two strains of

alcohol preferring rats [248]. Alcohol preference can be

suppressed by drugs that enhance 5-HT function, and

Fawn Hooded rats, which express dysfunction in central 5-

HT transmission, exhibited a high preference for ethanol
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[56,103,211,249]. Finally, in common with other amphet-

amine derivatives such as fenfluramine and para-chloroam-

phetamine ( pCA), MDMA produced 5-HT mediated non-

reflexive antinociception [64].

14. MDMA and ecstasy

Recent community surveys of the illegal use of

controlled drugs in the UK have reported that approximately

4% of 16–59 year olds have ever taken ecstasy [242,243].

This figure represents over two million people. Comparable

figures have been reported from the USA and the rest of

Europe [126,154,295]. Whilst levels of use have remained

stable in Europe, between 1997 and 1999 there was a 69%

increase in self-reported ecstasy use in USA college

students [290]. Within the ‘rave’ dance music culture the

percentage of individuals reporting use rises to 90%,

although it is not known exactly how many people, and

what percentage of the general population this actually

represents [25,252,306].

Research into the effects of MDMA refer to the contents

of ecstasy tablets as MDMA. These tablets have readily

identifiable features, such as colours and imprinted designs

(See Fig. 2). This has led to the notion of brand name ecstasy

tablets as numerous designs mimic real brand names, such

as Calvin Klein and Mitsubishi. As with all illegally

purchased controlled drugs the contents of these tablets

are highly variable. White doves have been found to contain

between 19–140 mg of MDMA, 94–125 mg of MDEA and

185–197 mg of ketamine [54,280,307]. Mitsubishi tablets

have been found to contain between 40–109 mg of MDMA

and some also contained MDEA [54]. Other drugs

which have been found in ecstasy tablets include dextro-

methorphan (DXM), MDA, 4-bromo-2, 5-dimethoxyphe-

nethylamine (2CB), MBDB, methamphetamine,

4-methylthioamphetamine (4-MTA), paramethoxyamphe-

tamine (PMA), ephedrine, salicylates, and over the counter

painkillers [11,204,224,241,261]. As a consequence of this

variation the World Health Organisation has concluded that

the term ‘ecstasy’ is generic for a wide range of compounds

[308]. In this context it is probably not appropriate to equate

ecstasy solely with MDMA and discussion of its effects

must also take this into consideration.

An essential difference between pre-clinical studies and

human patterns of ecstasy use is polydrug use, i.e. the use

of a variety of drugs and drug combinations [55,235].

Several lines of evidence suggest that combined use of

drugs of abuse may modulate the neurotoxic effects of

MDMA, possibly through thermoregulation. 5-HT2A

receptor agonists, for example, augment 5-HT neurotoxi-

city when administered in combination with MDMA [130].

It has been postulated that 5-HT acting at 5-HT2A receptors

partly underlies the hyperthermic effects of MDMA [271].

Antagonists acting at 5-HT2A receptors also provide

protection against neurotoxicity [83]. Use of LSD, a potent

5-HT2A receptor agonist, is common amongst members of

the rave scene in an ecstasy combination called ‘candy-

flipping’ [267]. Preliminary evidence suggests that co-

administration of d-amphetamine with MDMA potentiates

the neurotoxic response through thermoregulatory means

[225,226]. Furthermore, analogues of MDMA or sub-

neurotoxic doses of MDMA can be rendered neurotoxic by

co-administration of d-amphetamine or the DA precursor

L-DOPA [152,153,272]. Again, co-use of amphetamines

with ecstasy is a common practice (e.g. [6,252,306]).

NMDA receptor antagonists, perhaps analogous to co-use

of ketamine in humans, and ethanol, lower core body

temperature, thereby offering protection against neurotoxic

effects [76,84,88]. Many human users appear aware of

strategies discussed in the scientific literature to

reduce potential neurotoxicity. To date there has been

Fig. 2. Example of an ecstasy tablet (White Dove) from a batch with a mean MDMA content of 78.8 mg [54].
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little pre-clinical work specifically modelling the acute

behavioural and toxicological effects of these patterns of

poly drug use (although the discriminative stimulus

properties of the MDMA/LSD combination have been

investigated [111]). If users are engaging in strategies to

minimise neurotoxicity then it is essential that the

behavioural effects of these drug combinations are

thoroughly investigated in the laboratory.

There has been much debate over inter species dose

scaling in the literature, particularly for the purposes of

establishing a threshold neurotoxic dose in humans (e.g.

[192,299]). Essentially, it has been argued that neurotoxic

doses used in animal work (generally .10 mg/kg) are

comparable to those ingested by human users. These claims

have been countered by other authors on the basis that there

are discrepancies between what is known about the

pharmacokinetics and metabolism of MDMA and its

neurotoxicity in rats and man. A more suitable dose for

interspecies scaling may be that which has distinct

behavioural effects. In rats, the ED50 of MDMA in standard

drug discrimination studies is approximately 0.8 mg/kg

after injection. Using the same principles of inter species

dose scaling, this is equivalent to a dose of approximately

0.15 mg/kg in a 70 kg man. More typically, a dose of

1.5 mg/kg is used for discrimination training. This is

equivalent to approximately 0.28 mg/kg after substitution

into the scaling calculation. Harris and colleagues [137]

reported that a dose of 0.5 mg/kg MDMA produced no

discernible subjective effects in humans, suggesting that

there may be some problems in interspecies dose calcu-

lations when applied to MDMA.

It is important that there is some means of equating doses

used in pre-clinical studies and those ingested by humans.

The overlap between effective doses in drug discrimination

studies and those used in volunteer administrations suggests

that, in the absence of a reliable dose scaling model, a

straightforward dose–dose comparison may be appropriate

between rats and humans. By this simple criteria, the

relevance of behavioural studies which utilise very high

dosing protocols (e.g. .15 mg/kg MDMA) is questionable.

Such work provides useful insights into the actions of

MDMA and increases understanding of the neurochemistry

underlying various behaviours, but may reveal little about

drug effects in humans.

15. Conclusions

MDMA has a complex pre-clinical pharmacology that

involves a number of neurotransmitter systems and its

behavioural effects have not been extensively characterised.

Drug discrimination studies indicate that MDMA and

related compounds form a distinct group, the entactogens.

This relatively unique combination of stimulus properties

probably underlies its current popularity among human drug

users. It is also evident that a great many behavioural effects

are dose dependent. With the doses used in the rat studies

reviewed ranging from 0.2 to 20 mg/kg it is difficult to

determine the precise mechanisms involved until the

pharmacology of MDMA has been more extensively

characterised in this species.
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