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The neurotoxic potential of amphetamine and some ot its analogues has come to light
over the last two decades. The first clue that amphetamines possess neurotoxic activity
came in 1972, when Sanders-Bush and colleagues! noted that rats given a single dose
of p-chloroamphetamine (PCA) developed depletions of presynaptic serotonergic
neuronal markers which lasted tor months bevond the period of drug exposure. These
findings, coupled with subsequent observations,2-8 established PCA as a potent sero-
tonergic neurotoxin, and provided the first suggestion that amphetamines possess
NEUrotoXic activity.

The fact that neurotoxicitv s not unique to PCA. but is also a property of the
parent compounds ampheramine and methamphetamine: surtaced in 1976, when
Serden and colleagues” tound that rhesus monkevs given repeated high doses of meth-
amphetamine developed marked and persistent depletions ot caudate dopamine. That
same vear (1976), Gibb and coworkers!® made similar observations in methamphet-
amine-treated rats and, shortly thereatter, Ellison and coworkers!! extended findings
with methamphetamine to amphetamine. Along with a number of subsequent
studies,!2-2! these carly reports established the neurotoxic potential of amphetamine
and methamphetamine. Further, these early reports sparked a series of studies which
led to the discovery that methylenedioxy amphetamine analogues were particularly
toxic to brain serotonin neurons?2-3 (TABLE 1). Since some of these analogues are rec-
reationally abused®-33 [e.g., 3.+-methylenedioxyamphetamine (MDA), 3,4-methyl-
enedioxymethamphetamine (MDMA), 3,4-methylenedioxyethylamphetamine (MDEA),
N-methyl-3,4-methylenedioxyethylamphetamine (MBDB)], much effort has been de-
voted to the characterization of their pharmacologic properties and assessment of the
risks they might pose to humans.

This chapter will focus on the neurotoxicity of one methylenedioxy amphetamine
derivative in particular, MDMA (“Ecstasy”), and emphasize recent findings in non-
human primates. MDMA is highlighted for several reasons. First, MDMA is one of

# This work was supported by NIDA Grants DA05707 and DA05938 trom the NIH.
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TABLE 1. Amphetamine Analogues with Neurotoxic Activity

R’\\/Q _CH,_};NQ

Substituent Toxicity

Ry Ro R3 DA 5-HT
Amphetamine H H H ++ -
Methamphetamine CH3 H H ++ +++
Dimethylamphetamine CH3 CHz3; H + -
MDA H H /C\ - + 4+ +
MDMA CH3 H O\ O - 4+ +
MDEA CHLCH; B " - .
MRDB CH>CHj3; CH; " _ + 4

the most trequently abused amphetamine analogues. both in the United States3-33
and abroad.?3 Second, MDMA is the prototype methvlenedioxy amphetamine; as
such, information on MDMA may shed light on properties of other members of the
group (MDA, MDEA, MBDB). Third, MDMA is one of the few amphetamine de-
rivatives that has been tested in both rodents and nonhuman primates. Interspecies
comparisons are therefore possible, and these can help gauge the risks that MDMA
and related drugs might posc to humans.

WHY PRIMATES?

Given C\lstmg data in rodents,?2-30 and the expense and difficulty of carrving out
studies in primates, it scems appropriate to specify a rationale for conducting studies
of MDMA in monkeys. Monkeys, like humans, metabolize amphetamines chiefly by
means of side-chain deamination, whereas rats metabolize amphetamines mainly
through ring hydroxvlation.?” As such, findings in nonhuman primates are more
likely to predict MDMA's effects in humans. In addition, there is the precedent of
1- mcthvl-4-phcnvl 1,2,3,6- tctrahvdropvndmc (MPTP). It was only after MPTP was
tested in primates that its toxic behavioral effects became apparent,3® and the first pri-
mate mode! of Parkinson’s disease was developed.’® Indeed, a major impetus for
undcrtakmg studies of MDMA in monkeyvs was to develop a primate mode! of central
serotonin deficiency. Such 2 model mlght be used to elucidate the role of serotonin
in the primate central nervous system (CNS).

EFFECTS IN PRIMATES MORE PRONOUNCED
THAN IN RODENTS

Onc of the first findings to emerge from studies of MDMA in primates was that
MDMA’s neurotoxic effects are more pronounced in the monkey than in the rat.40-43
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FIGURE 1. Effect of MDMA in' the primate versus the rodent.

FIGURE 1 summanizes the results of a representative study in which MDMA was given
to rats and squirrel monkeys subcutaneously twice daily (at 0900 and 1700 hours) for
4 days. Two weeks later, the animals were killed and cortical serotonin levels were de-
termined. As shown in FIGURE 1, monkeys are more sensitive than rats to the
5-HT-depleting effects of MDMA. In addition, the maximal effect of MDMA in the
squirrel monkey is greater than that in the rat. These results, which are in accord with
those of others,*-#2 indicate that MDMA produces greater neurotoxic effects in pri-
mates than in rodents. Whether the greater effects in the monkey are related to phar-
macokinetic or pharmacodvnamic factors remains to be determined.

NERVE CELL BODIES IN PRIMATES AFFECTED

Until recently, the neurotoxic effects of amphetamines have been thought to be
limited to monoaminergic axon terminals, sparing monoaminergic nerve cell bodies
in the brain stem.2129:#:45 [n evaluating these data, however, it is important to bear
in mind that virtually all of the studies have been carried out in rodents, and it may
be that rodents do not sustain sufficient axonal damage to cause retrograde degenera-
tion of the nerve cell body.?! Because of this consideration, the status of nerve cell
bodies was evaluated in MDMA-treated primates,* which develop larger serotonin
deficits than do MDMA-treated rodents (FiG. 1). Squirrel monkeys treated with a reg-
imen of MDMA that causes severe axonal damage (5 mg/Kg twice daily for 4 days) were
killed for anatomic studies of nerve cell bodies two weeks later. In hematoxylin-eosin
(H&E)-stained sections, no evidence of cell loss was found in the raphe nuclei. How-
ever, in sections stained with luxol fast blue (LFB)—cresyl violet many of the neurons
in the dorsal raphe nucleus (DRN) were found to contain brownish red spherical cyto-
plasmic inclusions which displaced the nucleus to the periphery of the cell perikaryon.
Additional studies showed that the inclusions contained lipofuscin. The presence of
lipofuscin suggested that inclusions arose from lipid peroxidation of cell components
and subsequent phagolysosomal activity. While the exact sequence of events remains
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to be confirmed, the cytopathologic changes described provide one of the first sug-
gestions that ampheramine neurotoxicity can involve the nerve cell body, at least in
the primate.

LASTING EFFECTS IN PRIMATES

If nerve cell bodies in primates are damaged, MDMA's effects in the monkey might
be anticipated to be longer lasting than in the rat, where gradual recovery is the
rule,*4¢ presumably because nerve cell bodies are spared.2%:4445 To test this hypoth-
esis, a time-course study was undertaken in primates.*” Squirrel monkeys were treated
with MDMA (5 mg/kg rwice daily for 4 days) and examined 2 weeks, 10 weeks,
8 months, and 18 months after MDMA treatment. In each animal, three presynaptic
markers of serotonin neurons were measured (serotonin, [3H Jparoxetine-labeled sero-
tonin uptake sites, and 5-hyvdroxvindoleacenic acid {5-HIAA}), and compared with
those of controls. These studies revealed that by 10 weeks, there was a trend toward
recovery, bur that by 18 months, serotonergic deficits were as severe as at 2 weeks
(F1G. 2). Together with previous findings in methamphetamine-treated monkevs,%48
these resuits suggest that the neuroroxic effects of amphetamines in primates are longer
lasting than 1n rodents. Further. these results are consistent with the view that damage
of nerve cell bodies impairs the ability of neuronal pcnl\anon to support axonal re-
covery. Recent findings provide further support for this view. ¥

TOXIC DOSES IN MONKEYS CLOSELY APPROACH
DOSES USED BY HUMANS

In view of MDMA’s lasting effects in monkevs, long-term effects in humans become
a concern. However, before generalizing the present results to man, it is important to
emphasize that MDMA regimens in monkeys differed from typical human-use pat-
terns in two key respects: (1) monkeys received multiple MDMA doses over a 4-day
period, whereas humans generally take single doses, usually weeks apart; (2) monkeys
received MDMA subcutaneously, whereas humans generally take the drug orally. Be-
cause of these differences, studies have been performed to assess the influence of route
and frequency of MDMA administration on the expression of MDMA neurotox-
icity. 30-50-52 These studies have shown that the oral route of administration does not
afford significant protection against MDMA neurotoxicity. Further, one of the studies
has shown thar a singlc oral dose of MDMA (5 mg/kg) produces a depletion of brain
serotonin two weeks later.50 Similar observations have recently been made in mon-
kevs treated with dexfenfluramine,5? an amphetamine derivative used clinically in the
treatment of obesity. Hence, at least two amphetamine analogues produce neurotoxic
effects in monkeys at doses that closely approach those used by humans.

5-HIAA IN CEREBROSPINAL FLUID REFLECTS
DAMAGE IN CNS

Before proceeding with studies in humans, it was important to determine whether
CSF 5-HIAA could serve as a marker for MDMA neurotoxicity in living nonhuman
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FIGURE 2. Recovery after MDMA in the primate versus the rodent.

primates. If it could, CSF 5-HIAA might be useful for detecting MDMA neurotox-
icity in humans. Squirrel monkeys were treated with toxic doses of MDMA (5 mg/kg
twice daily for 5 days); two weeks later, the animals were lightly anesthetized and
samples of CSF were obtained at a cervical level. Shortly after CSF was removed, the
monkeys were sacrificed, and the brain and cervical spinal cord were removed and mea-

. sured for serotonin and 5-HIAA. These studies, which allowed changes in the CSF

to be directly correlated with changes in the CNS, showed that monkeys with 73-94%
depletions ot serotonin and 5-HIAA in brain and 42-45% depletions of serotonin and
5-HIAA in the cervical spinal cord had a 60 £ 7% depletion of 5-HIAA in cervical
CSE.>* These results indicate that CSF 5-HIAA levels can be used to detect the
MDMA neurotoxicity in the brain of living primates. Further, these results indicate
that 5-HIAA in cervical CSF underestimates serotonergic deficits in brain, and over-
estimates serotonergic deficits in the cervical spinal cord.

PRELIMINARY FINDINGS IN HUMANS

With this information in hand, 33 individuals with a history of extensive MDMA
use were evaluated.55 Volunteers agreed to undergo lumbar puncture, and to refrain
from using MDMA or any other drug for 2 weeks prior to study. CSF was collected
at a lumbar level (L4-L5 interspace) and analyzed for its monoamine metabolite con-
tent. Compared to age- and sex-matched controls (7 = 24), recreational MDMA users
showed a significant reduction in 5-HIAA levels, but no change in the values for homo-
vanillic acid (HVA) or 3-methoxy-4-hydroxy-phenylglycol (MHPG). While consistent
with findings in nonhuman primates,5* these data should be interpreted with caution
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for a number of reasons. First, diet, activity and other factors reported to influence
CSF 5-HIAA% were not controlled in this exploratory study. Second, subjects were
not formally screened for psychiatric disease, which could influence CSF 5-HIAA (. g,
as in depression®”). Third, while the reduction in CSF 5-HIAA could have been
caused by MDMA, it could have been caused by other drugs, since most of the par-
ticipants were polvdrug users. Fourth, reduced CSF 5-HIAA levels may have predated
the use of MDMA. Finally, another study5® involving five subjects found no altera-
uon in CSF 5-HIAA, although a larger study,5 which used a neuroendocrine ap-
proach to measure serotonin function, did find evidence suggestive of impaired sero-
tonin function in recreational MDMA users. For all these reasons, we are currently
conducting a controlled study of recreational MDMA users.

OTHER CLINICAL OBSERVATIONS

While the neurotoxic effects of MDMA in humans remain to be documented, a
number of recent case reports merit attention because thev describe a variety of neuro-
psvehiatric sequelac in recreational MDMA users, some of which may be linked to se-
rotonin avstuncrion. Thus far. neuropsvchiatric svndromes reported after MDMA use
inciude panic disorder with secondary depression.® depression with suicidaliry, 6162
chronic paranoid psvchosis. % recurrent acute paranoid psvchosis,®* and chronic mem-
ory disturbance.® Notably, these syndromes have often occurred in individuals using
MDMA repeatedly, and usually at high dosage. Further, while all of these cases oc-
curred in individuals healthy at the time of MDMA ingestion, several of the reported
cases involved individuals with prior psychiatric histories. As such, it appears that nsk
factors for the development of neuropsvychiatric disturbance after MDMA ingestion
include a high dose of MDMA (either cumulative or acute) and a prior history of psy-
chiatric tliness.

Although the functional role of serotonin in the human brain is not well under-
stood. 1t 1s intriguing that 2 number of the neuropsychiatric syndromes mentioned
above have been linked to serotonin dysfunction. For example, serotonin has been im-
plicated in the regulation of mood,5” anxiety,%® impulse control,% aggression,% mem-
on.% sleep.®® and appetite.®® To what extent, if anv, the clinical disturbances men-
tioned above are due to MDMA-induced neurotoxiciry is unknown. However, since
a number of the subjects had psvchiatric histories suggestive of pre-existing seroto-
nergic impairment, it is tempting to speculate that MDMA, in these individuals, may
have altered an already compromised level of serotonergic funcrion.

The aforementioned case reports highlight the potential hazards of MDMA in hu-
mans. However, it should be emphasized that lingering functional deficits in healthy
individuals after sporadic use of moderate doses of MDMA are extremely rare. At first
glance, the paucity of adverse consequences is reassuring. However, many of the func-
tions in which serotonin has been implicated are subtle and subjective, and abnormal-
ities in these functions may be difficult to detect unless specific and sensitive methods
are used. Aside from CSF and neuroendocrine studies, strategies that may be employed
to detect subclinical serotonergic damage in humans include pharmacologic challenges
and positron emission tomography (once a suitable ligand is developed). Using such
strategies, 1t may be possible to obtain converging lines of evidence regarding the oc-
currence of MDMA neurotoxicity in humans.
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SUBSTITUTED AMPHETAMINES IN THE STUDY OF
NEUROPSYCHIATRIC DISEASE

As discussed by Fuller™ in this volume, amphetamines with dopaminergic neuro-
toxic properties (¢.g., amphetamine and methamphetamine [TABLE 1]) mav be useful
for studying Parkinson’s disease. In particular, a better understanding of how amphet-
amines damage dopaminergic neurons may yield insights regarding the process(es) un-
derlying nerve cell degeneration in Parkinson’s disease. Studies of amphetamine neuro-
toxicity could be relevant to Parkinson’s disease in one other respect. If amphetamine
and methamphetamine are found to cause dopaminergic damage in humans (as in ani-
mals®-21) studies of individuals with a history of amphetamine abuse may help deter-
mine whether an insult to CNS dopamine systems during early life is associated with
an increased risk for developing Parkinson’s disease at a later age. These studies would
be analogous to those in progress with the MPTP cohort,™ and could help test the
Calne and Langston hypothesis.™

Along similar lines, MDMA may be usetul in the study of serotonin and its role
in neuropsychiatric illness. However, unlike the clear-cut relationship between dopa-
mine and Parkinson’s disease, the role of serotonin in neuropsychiatric illness is less
well defined. Further, although serotonin neurotoxicity is well established in animals,
it is not yet known whether MDMA is neurotoxic in humans. Theretore, tor MDMA
animal models to become more useful in the study of neuropsychiatric illness, it is im-
portant to first determine whether MDMA induces neurotoxicity in humans, and if
it does, to identify functional consequences. If this can be accomplished, preclinical
MDMA models can be developed to study neuropsychiatric disorders in which im-
paired serotonin function is suspected.

MECHANISMS

The mechanisms by which MDMA and related drugs damage dopamine and sero-
tonin neurons are poorly understood. However, mechanisms under consideration wiif
be briefly mentioned because of their possible relevance to neurodegenerative dis-
orders. These include: (1) involvement of a toxic drug metabolite™37; (2) formation
of a toxic neurotransmitter metabolite [e.g., 6-hydroxydopamine (6-OHDA)™8 or
5,6-dihydroxytryptamine (5,6-DHT)™]; (3) increased dopamine release somehow
leading to dopaminergic and serotonergic neurotoxicity$%-81; (4) involvement of excit-
atory amino acids®?; (4) oxidative stress’3; and, possibly as a terminal event, (5)
calcium-mediated cell injury.3 Given the wide range of potential mechanisms under
investigation, it seems safe to predict that studies of amphetamine neurotoxicity will
contribute to our understanding of neurodegenerative disorders.

SUMMARY AND CONCLUSION

A wealth of evidence has accrued over the last 20 years indicating that certain am-
phetamine analogues have the potential to damage central MOoNoaminergic neurons.
For example, amphetamine has been shown to be toxic to dopamine neurons, MDMA
to serotonin neurons, and methamphetamine to both (Taste 1). In rodents, the toxic
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effects of amphetamines appear to be limited to axon terminals, and regenerative
sprouting tends to be the rule. By contrast, in primates, nerve cell bodies appear to
be affected, and the deleterious effects of amphetamine derivatives tend to be longer
lasring, and possibly permanent (F1G. 2). Although findings in animals are compelling,
observations in humans are less clear. In particular, it remains to be determined
whether amphetamine analogues damage central monoaminergic neurons in humans
and, if they do, whether functional consequences ensue. Also, the mechanism by
which amphetamines damage monoaminergic neurons remains to be defined. Further
insight into these basic and clinical aspects of amphetamine neurotoxicity should en-
hance our understanding of central monoaminergic systems in normal brain function,
and their role in the pathophysiology of neuropsychiatric disorders.
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